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Abstract. Despite that the bulk of our knowledge on brain function is estab-
lished around brain regions, current methods for comparing connectivity graphs 
largely take an edge-based approach with the aim of identifying discriminative 
connections. In this paper, we explore a node-based Gaussian Graphical Model 
(NBGGM) that facilitates identification of brain regions attributing to connec-
tivity differences seen between a pair of graphs. To enable group analysis, we 
propose an extension of NBGGM via incorporation of stability selection. We 
evaluate NBGGM on two functional magnetic resonance imaging (fMRI) da-
tasets pertaining to within and between-group studies. We show that NBGGM 
more consistently selects the same brain regions over random data splits than 
using node-based graph measures. Importantly, the regions found by NBGGM 
correspond well to those known to be involved for the investigated conditions. 
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1 Introduction 

Brain function is known to be largely mediated via the interactions between brain 
regions. Disruptions of these brain connections can result in severe consequences. 
Functional magnetic resonance imaging (fMRI) provides a non-invasive means for 
studying functional connectivity. The standard approach for analyzing brain connec-
tivity estimated from fMRI data is to perform univariate test on each connection [1]. 
However, the bulk of our knowledge on brain function originates from lesion studies 
and task-based functional imaging studies [2], and hence, is organized around brain 
regions, e.g. hippocampus is involved in memory processes. Further, how to design 
treatments to target a specific brain connection is unclear. Devising methods for iden-
tifying brain regions that give rise to altered connection patterns is thus beneficial. 

A modeling perspective that aids identification of discriminative brain regions is to 
treat the brain as a graph and characterize each brain region with a set of graph 
measures [3]. Under this perspective, brain regions are abstracted as graph nodes with 
connectivity modeled by graph edges. Graph measures, such as node degree (ND), 
clustering coefficient (CC), and betweenness centrality (BC), are widely employed, 
but only capture very specific attributes of the graphs, and thus, might at times fail to 
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isolate the discriminative nodes. A simple example illustrating this shortcoming is 
shown in Fig. 1. Despite that the connections to node 1 are different between the two 
graphs, ND, CC, and BC of node 1 are exactly the same. Recently, a probabilistic 
graphical model has been put forth that more fully exploits the connectivity infor-
mation in the graphs for identifying discriminative brain regions [4]. Promising re-
sults have been shown in a schizophrenia study. 

In this paper, we explore a node-based Gaussian graphical model (NBGGM) [5] 
for identifying brain nodes that drive differences between connectivity graphs.  
Compared to the model in [4], NBGGM has much fewer modeling assumptions. The 
classical GGM (Section 2.1) provides sparse inverse covariance estimates with zero 
elements reflecting conditional independence between node pairs. The output of 
GGM is thus a sparse set of edges. In contrast to GGM, NBGGM incorporates a  
row-column overlap norm (Section 2.2) that promotes selection of entire rows and 
columns, resulting in sparsity patterns similar to that in Fig. 1(d). Relevant nodes can 
hence be identified from the sparsity patterns. The original NBGGM (Section 2.3) is 
designed for finding relevant nodes from a pair of graphs (or multiple graphs), but not 
from two sets of graphs, which often arises in fMRI studies. For example, one might 
be interested in studying the differences between two experimental conditions within 
the same group of subjects, i.e. a within-group study. Alternatively, one might be 
interested in comparing two groups of subjects, e.g. Alzheimer’s disease (AD) pa-
tients vs. healthy controls, i.e. a between-group study. Both types of studies entail 
comparing two sets of graphs in drawing group inference. To facilitate group analysis, 
we propose an extension of NBGGM (Section 2.4) via incorporation of stability selec-
tion [6]. The underlying idea is that if we subsample the subjects many times and 
apply NBGGM on the “average” graphs of each subsample, nodes that are truly dis-
criminative are likely to be selected over a large fraction of subsamples, whereas false 
nodes are unlikely to be persistently selected. Also, stability selection has the property 
of being insensitive to the choice of regularization parameters [6]. We evaluate 
NBGGM on two fMRI datasets pertaining to within and between-group studies, and 
compare its performance against using weighted ND, CC, and BC in identifying dis-
criminative brain regions from functional connectivity graphs. 

 

 
(a) Graph A 

 
(b) Graph B 

 
(c) Edge Differences 

 
(d) Adjacency Matrix 

Fig. 1. Motivation example. (a) Edges between nodes 1 and 2 as well as between nodes 1 and 5 
in Graph A are absent in Graph B. (b) Edges between nodes 1 and 3 as well as between nodes 1 
and 4 in Graph B are absent in Graph A. (c) All edge differences are associated with node 1, 
but ND = 2, CC = 1, and BC = 0 for node 1 of both graphs. (d) Adjacency matrix encoding 
edge differences with non-zeros in dark blue. NBGGM promotes selection of entire rows and 
columns, which produces sparsity patterns similar to (d), hence enables node identification. 
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2 Methods 

2.1 Gaussian Graphical Model 

Let X be a n×d time series matrix with n being the number of time samples and d 
being the number of nodes. Assuming X follows a centered multivariate Gaussian 
distribution, N(0, Σ), a sparse estimate of Σ-1 can be obtained by minimizing the pe-
nalized negative log data likelihood over the space of positive definite matrices [5]: 
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where C is the sample covariance of X, ||ϴ||1 = ∑i,j|ϴij| is the l1 norm of ϴ, and λ1 con-
trols the level of sparsity. The key property of (1) is that 0’s in its solution indicate the 
corresponding node pairs are estimated to be conditionally independent given the 
other nodes. ||ϴ||1 promotes a sparse estimate of Σ-1, but does not impose any structure 
on the sparsity pattern. Constraining the sparsity pattern to be similar to Fig. 1(d) is 
useful for identifying relevant nodes. How to exert such a constraint is discussed next. 

2.2 Row-Column Overlap Norm 

A widely-used approach to impose structure on the sparsity patterns is to employ the 
group least absolute shrinkage and selection operator (LASSO) penalty [7]: 

 

, (2) 

 

where Wg is a vector with elements predefined to be in group g and G is the number 
of non-overlapping groups. Minimizing (2) promotes all elements within each group g 
to be jointly selected (or jointly set to 0). To select entire rows and columns, i.e. im-
pose a sparsity pattern similar to Fig. 1(d), one might be tempted to predefine each 
column of ϴ as a group and apply (2). However, due to the symmetric constraint on ϴ, 
selecting the entire column j of ϴ, i.e. ϴij for all i, requires ϴji for all i to also be se-
lected. Since all elements of each column are enforced to be jointly selected, the en-
tire ϴ would be selected in theory. This problem is due to overlaps between groups. In 
practice, assuming nodes a and b are relevant, (2) would only select ϴaa, ϴab, ϴba, and ϴbb [5], which does not help node identification. One way to deal with group overlaps 
arising from the symmetry of ϴ is to use a row-column overlap norm [5]: 

 

, (3) 

 

where V is a d×d matrix and Vj is its jth column. Defining Vj as a group enforces en-
tire columns to be selected, while imposing ϴ = V + VT ensures ϴ is symmetric. 
Hence, adding (3) to (1) would produce the desired effect of generating sparse sym-
metric estimates of Σ-1 with entire rows and columns selected. How to adapt (1) and 
(3) for identifying discriminative nodes from a pair of graphs is discussed next. 
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2.3 Node-Based Gaussian Graphical Model 

To identify nodes that give rise to differences between a pair of weighted graphs, one 
can combine (1) and (3) as follows [5], which we refer to as NBGGM: 

 

. (4) 

 

Penalizing ϴ1‒ϴ2 encourages ϴ1 and ϴ2 to be similar, while enforcing sparsity high-
lights their key distinctions. Importantly, Ω(ϴ1‒ϴ2) imposes structured sparsity such 
that entire rows and columns of ϴ1‒ϴ2 are jointly selected, which aids node identifica-
tion. Given weighted graphs, all edges associated with any node will always display 
some differences between graphs (let it be small). Thus, in effect, Ω(ϴ1‒ϴ2) helps find 
nodes with edges displaying larger differences in edge weights. Jointly minimizing all 
terms in (4) is non-trivial. A widely-used strategy is to introduce auxiliary variables to 
decouple the objective into sub-problems that are easily solvable. This strategy is the 
core of alternating direction method of multipliers [5], which can efficiently solve (4). 
With the implementation in [5], we observed that the selected nodes are sometimes 
not visually apparent from ϴ1‒ϴ2

. We instead recommend determining the selected 
nodes based on non-zero columns in V, which we found to provide an unambiguous 
answer. For the choice of λ1 and λ2, we bypass selecting a specific combination by 
using stability selection, as discussed next. Note that NBGGM can also be used for 
finding co-hubs between a pair of graphs by applying (3) on [ϴ1;ϴ2], i.e. ϴ1 and ϴ2 
concatenated column-wise [5]. Also, (4) can be extended for multi-graphs [5]. 

2.4 Group Analysis with NBGGM 

In fMRI connectivity studies, the task of comparing two sets of graphs, {C1(p)} and 
{C2(q)}, is often encountered. Here, p and q denote subject indices. For within-group 
studies, p = q and the analysis of interest is comparing conditions 1 and 2. In the case 
of between-group studies, p ≠ q and the analysis of interest is comparing two groups 
of subjects. A natural way to employ (4) in finding discriminative nodes is to apply it 
on the subject averages of {C1(p)} and {C2(q)}. However, declaring the selected 
nodes as significant can be dangerous, since sparse methods tend to be unstable, i.e. 
perturbations to the data can easily result in a different set of nodes being selected [6]. 
To obtain a stable set of nodes, one strategy is to employ stability selection [6]: 
 

1. Randomly subsample {C1(p)} and {C2(q)} by half, and compute their respec-
tive averages. For within-group analysis, choose the same set of subjects. 

2. For each (λ1, λ2) combination in [λ1
max, λ1

min] × [λ2
max, λ2

min], apply (4) to the 
two average sample covariance matrices. Let Zm(λ1, λ2) be a d×1 vector with 
elements corresponding to the nodes selected for subsample m set to 1.  

3. Repeat steps 1 and 2 for M = 1000 times. 
4. Compute the proportion of subsamples, πi(λ1, λ2), that node i is selected for 

each (λ1, λ2) combination. 
5. Declare node i as significant if max(λ1, λ2)πi(λ1, λ2) ≥ πth. 
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A πth that controls the expected number of false positives, E(F), is given by [6]: 
 

, (5) 

 

where F is the number of false positives and γ is the expected number of selected 
nodes, which can be approximated by: 1/M·∑m∑i(U(λ1, λ2)Zi

m(λ1, λ2)). U(λ1, λ2) denotes 
the union over all (λ1, λ2) combinations. We highlight two insights on (5) that have 
major implications on applying stability selection. First, (5) is a conservative bound 
on the family-wise error rate (FWER) = P(F≥1), since E(F) = ∑f=1

∞ P(F≥f) > P(F≥1). 
To control FWER at α = 0.05 with multiple comparison correction, i.e. P(F≥1) ≤ α/d, 
even for γ = 1, πth based on (5) is >1. In [6], πth is recommended to be set between 0.6 
and 0.9. In this work, we set πth to 0.8. Second, although stability selection does not 
require choosing a specific (λ1, λ2) pair, for n/2 > d, a “small enough” (λ1

min, λ2
min) pair 

could lead to all nodes being selected for all subsamples, thus max(λ1, λ2)πi(λ1, λ2) = 1. 
Hence, all nodes would be declared as significant. Since averaging the sample covari-
ance matrices is equivalent to computing the sample covariance of their associated 
time series concatenated together, even with e.g. 20 subjects, n/2 would be in the 
thousands range, whereas d is typically in the hundreds range. Thus, to mitigate de-
claring all nodes as relevant, we set λ1

min and λ2
min such that <50% of the nodes would 

be selected by (4). λ1
max and λ2

max are set such that only ~1% of the nodes are selected. 

3 Materials 

Two fMRI datasets from a within-group and a between-group study were used for 
method evaluation. For the within-group case, fMRI data were collected from 19 
healthy subjects as they think about joyful events (happy state) and sad events (rumi-
native state) in a self-driven manner without external stimulus. The data of the two 
mental states were acquired at two separate scan sessions, each lasting 8 min. Data 
acquisition was performed on a 3T GE scanner with TR = 2 s, TE = 30 ms, and flip 
angle = 77o. For each mental state, the fMRI data of each subject were motion cor-
rected, normalized to MNI space, and spatially smoothed with at 6 mm FWHM 
Gaussian kernel using FSL. Motion artifacts, white matter and cerebrospinal fluid 
confounds, and average global signals were regressed out from the voxel time series. 
A highpass filter at 0.01 Hz was subsequently applied to remove scanner drifts. To 
define brain nodes, we employed the atlas in [8], which comprises 90 functionally-
defined regions that span 14 widely-observed networks. Regions in the cerebellum 
were excluded due to incomplete coverage. Voxel time series within each region were 
averaged to generate brain region time series. Pearson’s correlation matrices were 
then computed from these regional time series, which served as input to NBGGM and 
the contrasted graph measures. For the between-group case, resting state fMRI data of 
6 min duration were collected from 20 AD subjects and 20 matched healthy controls 
(HC) with a similar acquisition protocol. The same preprocessing steps were per-
formed except a bandpass filter at 0.01 to 0.1 Hz was employed. Also, all 90 regions 
in [8] were used to generate brain region time series. 
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