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Abstract

The human immunodeficiency virus (HIV) pandemic is one of the most serious health chal-
lenges humanity is facing today. Combination therapy comprising multiple antiretroviral
drugs resulted in a dramatic decline in HIV-related mortality in the developed countries.
However, the emergence of drug resistant HIV variants during treatment remains a prob-
lem for permanent treatment success and seriously hampers the composition of new active
regimens.
In this thesis we use statistical learning for developing novel methods that rank combi-

nation therapies according to their chance of achieving treatment success. These depend
on information regarding the treatment composition, the viral genotype, features of viral
evolution, and the patient’s therapy history. Moreover, we investigate different definitions
of response to antiretroviral therapy and their impact on prediction performance of our
method. We address the problem of extending purely data-driven approaches to support
novel drugs with little available data. In addition, we explore the prospect of prediction
systems that are centered on the patient’s treatment history instead of the viral genotype.
We present a framework for rapidly simulating resistance development during combination
therapy that will eventually allow application of combination therapies in the best order.
Finally, we analyze surface proteins of HIV regarding their susceptibility to neutralizing

antibodies with the aim of supporting HIV vaccine development.

Kurzfassung

Die Humane Immundefizienz-Virus (HIV) Pandemie ist eine der schwerwiegendsten ge-
sundheitlichen Herausforderungen weltweit. Kombinationstherapien bestehend aus mehre-
ren Medikamenten führten in entwickelten Ländern zu einem drastischen Rückgang der
HIV-bedingten Sterblichkeit. Die Entstehung von Arzneimittel-resistenten Varianten wäh-
rend der Behandlung stellt allerdings ein Problem für den anhaltenden Behandlungserfolg
dar und erschwert die Zusammenstellung von neuen aktiven Kombinationen.
In dieser Arbeit verwenden wir statistisches Lernen zur Entwicklung neuer Methoden,

welche Kombinationstherapien bezüglich ihres erwarteten Behandlungserfolgs sortieren.
Dabei nutzen wir Informationen über die Medikamente, das virale Erbgut, die Virus Evo-
lution und die Therapiegeschichte des Patienten. Außerdem untersuchen wir unterschiedli-
che Definitionen für Therapieerfolg und ihre Auswirkungen auf die Güte unserer Modelle.
Wir gehen das Problem der Erweiterung von daten-getriebenen Modellen bezüglich neuer
Wirkstoffen an, und untersuchen weiterhin die Therapiegeschichte des Patienten als Er-
satz für das virale Genom bei der Vorhersage. Wir stellen das Rahmenwerk für die schnelle
Simulation von Resistenzentwicklung vor, welches schließlich erlaubt, die bestmögliche Rei-
henfolge von Kombinationstherapien zu suchen.
Schließlich analysieren wir das HIV Oberflächenprotein im Hinblick auf seine Anfälligkeit

für neutralisierende Antikörper mit dem Ziel die Impfstoff Entwicklung zu unterstützen.
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1 Introduction

Todays methods of modern molecular biology generate massive amounts of data. Pro-
teomics focuses on the composition of proteins (our molecular machines), (epi-)genomics
studies the influence of changes in a person’s (epi-)genetic information on e.g. suscep-
tibility to diseases, where transcriptomics analyzes which genes are active under certain
conditions. Research conducted with these methods in the context of diseases often aims
at providing personalized therapy.
In essence, personalized therapy refers to the delivery of the right drugs in the right

dosage to the patient. Decisions regarding the selection of drugs are in general based on
available biomarkers, e.g. the patient’s genome; personalization ensures a (cost-)effective
therapy. The ways leading to the “personalization” are manifold, for example:

1. Understanding the molecular basis of the disorder. It is crucial to understand how
genetic changes lead to the disease, because deeper understanding will allow a classifi-
cation of defects with similar phenotype into subgroups depending on their molecular
origin. This, in turn, will lead to the development of better drugs targeted at the
causes of the disease leading to shorter treatment times and reduced costs.

2. Understanding of pathways involved in drug metabolization. Here, genetic changes
influencing the effective concentration of the drug are of interest. For instance, mu-
tations resulting in overdosing of the drug increase the risk of side-effects, while
mutations that lower the drug concentration may result in treatment failure.

3. Pathogen tailored treatment. Obviously, knowing the disease-causing pathogen al-
lows the selection of better matched drugs for its eradication (e.g. targeted vs.
broad-spectrum antibiotic). Moreover, resistance of pathogens against antimicrobial
agents often requires screening for active compounds prior to treatment start.

Typically, “omics” strategies are employed for identifying disease-related biomarkers. In
comparative studies, two groups of individuals (patients vs. healthy controls or responders
vs. non-responders) are studied with proteomics, (epi-)genomics, and transcriptomics.
In these settings, data are generated at a large-scale and their analysis is far beyond the
feasibility of manual inspection. Thus, bioinformatics methods are needed. These methods
often rely on methodologies from statistics and statistical/machine learning to separate
healthy from sick individuals based on the given data. Moreover, bioinformatics methods
are needed to design tools that analyze routinely generated omics data, and thereby bring
personalized therapy into clinical routine.
In this thesis we focus on personalized treatment of infections with the human immuno-

deficiency virus (HIV). HIV therapy is one of the most prominent examples of personal-
ized therapy today and belongs to the third category of personalized medicine: finding
antiretroviral agents that are effective against the predominant viral variant in the host.

1



2 1 Introduction

Personalized HIV therapy

Briefly, HIV mainly infects cells of the human immune system and, when untreated, HIV
infections typically lead to the acquired immunodeficiency syndrome (AIDS) followed by
death due to opportunistic infections. By now, AIDS accounts for an estimated annual 2
million deaths and thus poses one of the major worldwide health challenges.
Patients in developed countries have access to about two dozen antiretroviral drugs.

These compounds interrupt the replication cycle of the virus and thereby allow for a
partial recovery of the patient’s immune system. Complete eradication of all viral particles
from the patient is not possible. Moreover, treatment success as defined by undetectable
amounts of virus in the blood can only be maintained for a limited time. The cause of the
limited treatment success is the dynamic viral population within the host: high turnover
rates and short replication cycles paired with an error-prone replication process lead to
the evolutionary selection of mutations that reduce the susceptibility of the virus to the
applied antiretroviral drug. These resistance mutations eventually render the antiretroviral
drug useless for treating the patient.
To date, testing for drug resistance prior to prescription of antiretroviral compounds is

highly recommended. Resistance can be assessed either by slow and expensive laboratory
based tests in cell cultures or via fast and cheap standardized methods that determine the
genetic sequence of the viral drug targets. For the output of the latter method, a multitude
of tools provides classification for single drugs in terms of drug resistance.
In order to delay the emergence of resistance mutations, modern anti-HIV regimens

combine at least three drugs with a minimum of two different mechanisms of action. The
introduction of this highly active antiretroviral therapy (HAART) resulted in a dramatic
decline of HIV-related mortality in developed countries. Resistance testing provides the
pivotal tool for selecting active compounds against the viral population in the patient.
Methods for resistance testing, however, still provide only recommendations for single
drugs and thereby ignore the interplay between multiple drugs for attacking HIV.

Outline

We begin in Chapter 2 with a brief overview of the discovery of HIV, followed by a sum-
mary of the current pandemic. Then, we continue with a description of the HIV particle,
its replication cycle, and clinical aspects of the HIV infection. This is followed by a review
of state-of-the-art HIV treatment including a detailed description of the viral drug targets.
We continue with a brief summary on HIV resistance testing and available genotype inter-
pretation methods. We conclude the chapter with an outlook on potential advancements
towards richer decision support systems.
In Chapter 3 we present ways for improving and updating geno2pheno, a web service

that predicts drug resistance from the viral genome.
In Chapter 4 we start with a motivation for interpretation systems that consider combi-

nation therapies and summarize previously developed features that encode viral evolution.
Then we present geno2pheno-THEO, a freely available interpretation tool, that predicts
clinical response to combination therapy using information on the treatment, the virus, and
evolutionary features. We continue with a retrospective clinical validation of geno2pheno-



3

THEO, where we compare the prediction performance to three widely-used expert-based
interpretation systems. Moreover, we study the robustness of geno2pheno-THEO and ex-
plore the benefit of regimen-specific models.
Chapter 5 begins with an introduction to the EuResist project, which is followed by a

presentation of the three decision support systems for inferring short-term in vivo response
to combination therapy developed within the project. We continue with a description of
the EuResist prediction engine including combination approaches, performance assess-
ment (including human experts as reference), and the web service. We proceed with an
investigation on alternative definitions for response to combination treatment and study
the performance of resulting prediction engines. Then we approach the update-problem,
which constitutes the Achilles’ heel of data-driven decision support systems for HIV com-
bination therapy. We conclude the chapter with the presentation of a prediction system
that uses the patient’s treatment history instead of the viral genotype to infer response to
treatment.
In Chapter 6 we motivate the requirement for planning sequences of HIV therapies. We

present transducers, a family of finite state machines, that constitute the computational
framework for our novel method to rapidly simulate viral evolution during combination
therapy. Furthermore, we introduce five mutation models that are based on in vitro and
in vivo resistance data. The framework is studied in two validation settings. In the first
setting we challenge the framework to separate failing from succeeding treatments on the
basis of mutations caused by the preceding regimen. Within the second setting we assess
whether overall resistance development is correctly reflected by resistance development
within drug classes. The chapter is concluded by a case study comparing the impact of
typical first-line regimens on future drug options.
Chapter 7 makes the transition from personalized anti-HIV therapy to the probably only

true solution for the HIV pandemic: an HIV vaccine. In the beginning of the chapter we
summarize the basic concept of the human immune system comprising innate and adap-
tive immune response. This summary is followed by a short description of how vaccines
establish immunity. Further, we list the challenges posed by HIV to vaccine design and
review the most prominent vaccine candidates. The focus of the chapter is the prediction of
neutralization by antibodies based on the genetic sequence of the viral genome. Analysis
of the statistical learning models reveals positions that are essential for antibody bind-
ing. We conclude the chapter with potential improvements for our approach and further
applications to the development of HIV vaccines.
Chapter 8 concludes the thesis and provides an outlook on further advancements on

personalized HIV therapy.
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2 AIDS, HIV, and Antiretroviral Therapy

“In the field of observation, chance favours the prepared mind.” – Louis Pasteur

This chapter aims at providing the necessary background for this thesis on the human
immunodeficiency virus (HIV), the acquired immunodeficiency syndrome (AIDS), and
state-of-the-art antiretroviral treatment with the focus on available antiretroviral drugs
and routine treatment guidance. However, many important aspects that are not of direct
relevance for this thesis had to be omitted.

2.1 The AIDS pandemic

In 1981 a mysterious disease was discovered among the gay community in the United States
of America. The patients were hospitalized due to diseases resulting from an impaired
immune system. Owing to the media, the illness quickly became known as GRID (gay-
related immunodeficiency). The cause of the disease was unknown and the race for its
discovery commenced. The first effective tool to screen for a possible infection with the
unknown agent was a positive test for an infection with the Hepatitis B virus (HBV).
Roughly one year after the first cases of this immunodeficiency in the USA were re-

ported, the virus was identified and isolated by researchers at the Institute Pasteur in
Paris (France). For their discovery of the infectious agent that is now known as the Hu-
man Immunodeficiency Virus (HIV), Luc Montagnier and Françoise Barré-Sinoussi were
awarded the Nobel-Price for Physiology or Medicine in 2008 (Barré-Sinoussi et al., 1983).
HIV infects cells of the human immune system and eventually leads to their death, thus
explaining the typical symptoms of immunodeficiency in HIV infected patients. Robert C.
Gallo, who also claimed to be the first discoverer of the infectious agent causing AIDS was
not awarded the Nobel Price (Gallo et al., 1983). Indeed, it turned out that the probes in-
vestigated by Gallo’s group were co-infected with a Human T cell Leukemia Virus (HTLV),
and thus “the paper by the Montaginer/Chermann group is unequivocally the first reported
true isolation of HIV from a patient with lymphadenopathy” (Gallo, 2002). Gallo, how-
ever, demonstrated that the identified agent is the cause of AIDS (Popovic et al., 1984)
and developed the first diagnostic blood test that prevented new infections and probably
saved thousands of lives. The omission of Gallo from the prestigious Nobel Price, despite
his numerous major contributions in the early years, resulted in a massive response by the
international scientific community (Abbadessa et al., 2009). The history of the discovery
of HIV has been briefly summarized by the main contributers Montagnier (2002) and Gallo
(2002) in featured articles.
The period following the identification of HIV (which in the early works was termed LAV

or HTLV-III due to its believed relation to the group of HTL viruses) as the cause of AIDS
was part of the scientific success story of modern medicine. Just to name a few milestones:

5



6 2 AIDS, HIV, and Antiretroviral Therapy

Figure 2.1: Global prevalence of HIV in December 2007. The figure was adapted from
the WHO 2008 Report on the global AIDS epidemic available at http://www.
who.int/hiv/data/en/. By the end of 2008 at total of 33.4 million [31.1-35.8]
people were estimated to live with HIV.

the genome was sequenced and inter- as well as intra-patient variation in viral populations
was detected (Shaw et al., 1984; Ratner et al., 1985; Wong-Staal et al., 1985; Hahn et al.,
1986), the virus was found in the brain of AIDS patients (Shaw et al., 1985), the modes
of HIV transmission were elucidated, all of HIV’s genes and most proteins were defined.
But most importantly, the blood supplies in most developed nations were rendered safe by
screening for HIV. The capability of screening for HIV infections, however, provided a first
hint on how severe the HIV pandemic should become, e.g. sera from hemophiliacs in Japan
were tested HIV negative early 1984, by end of 1984 already 20% of those patients were
tested HIV positive after they had been treated with HIV-contaminated blood products
from the United States (Gallo, 2002).

The spread of AIDS was rapid, soon after first reported in 1981 in the USA, fourteen
countries reported cases of AIDS in 1982, and 33 already in 1983. By the end of 2008,
33.4 million people worldwide were estimated to be living with HIV. Figure 2.1 displays
the prevalence of HIV in different regions of the world. According to the WHO 2009
report on the global AIDS epidemic, 2.7 [2.4-3.0] million people were newly infected with
HIV and about 2.0 million [1.7-2.4] million people died of AIDS in 2008. HIV is believed
to be responsible for approximately 25 million deaths, thus rendering it the most serious
biological killer to date.

The prevalence of HIV infected individuals varies heavily between geographic regions,
e.g. ranging from 0.1 to 0.5% in Central Europe to 15.0 to 28.0% in Southern Africa. These
regional differences are likely the result of many factors, including: different availability of
antiretroviral drugs, information campaigns (e.g. the government of South Africa pursued
an “AIDS denialism” policy that caused deaths of about 330,000 people (Ano, 2006, 2008)),

http://www.who.int/hiv/data/en/
http://www.who.int/hiv/data/en/
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the stigmatization of the HIV infection, and frequency of rapes (e.g. South Africa has an
extremely high rate of rapes (Carries et al., 2007)). The high prevalence in sub-Saharan
Africa probably results also from the fact that this region is the origin of HIV (Zhu et al.,
1998). It is estimated that HIV entered the human population in 1931 [95% CI 1915-1941]
through multiple infections from simian immunodeficiency virus (SIV)-infected nonhuman
primates (Korber et al., 2000). Thus, approximately 50 years passed between the entry of
the virus into the human population and the enrichment of AIDS cases in 1981. During
these years, the virus could spread unrecognized, mainly because the late symptoms of
AIDS coincide with symptoms of e.g. malnutrition and tuberculosis, which happen to
be frequent problems in the infected population. As a consequence, the symptoms were
attributed to rather well-known causes instead of a new infectious agent.

2.1.1 HIV Diversity

As briefly mentioned, HIV was introduced into the human population by multiple cross-
species transmissions from SIV infected nonhuman primates. To date, we distinguish
two types of HIVs: HIV type-1 (HIV-1), which is responsible for the current pandemic,
evolved from an SIV variant present in chimpanzees, whereas HIV-2 is the result of a
zoonotic infection from SIV in sooty mangabeys (Heeney et al., 2006). HIV-1 comprises
four genetically distinct groups, namely M (main or major), N (non-M, non-O), O (outlier),
and P, which were the results from at least four different zoonotic infections. Group P was
only recently identified by Plantier et al. (2009) and originates from an SIV variant in
gorillas. This work focuses on HIV-1 group M as it accounts for most infections worldwide
and is therefore of premier interest.
HIV-1 group M is further divided into subtypes. This devision is based on clusters typi-

cally appearing in phylogenetic analyses of genetic sequences of HIV-1 group M (Robertson
et al., 2000). These subtypes are named A to D, F to H, J, and K and have a different
prevalence in different geographic regions of the world (Table 2.1), hence, suggesting that
their population structure is the result of founder effects. However, it is possible that some
phylogenetic clusters only appear because of incomplete sampling of the global viral popu-
lation, e.g. newly sequenced HIV-1 strains from Central Africa fall in-between established
subtype clusters (Rambaut et al., 2004).
In addition to the pure subtypes recombinant forms exist, as well. These are either well

described established circulating recombinant forms (CRFs) or unique recombinant forms
resulting from super-infection of a patient with two or more different subtypes.
Questions related to HIV-1 subtypes and its influence on disease progression (Kanki

et al., 1999) and efficacy of antiretroviral treatment are still of major interest (Kantor et al.,
2005). Subtype B is most prevalent in the developed, industrialized regions of the world,
and therefore a representative of this clade was used for development of antiretroviral drugs.
Thus, the genetic changes that distinguish B variants from non-B variants are believed to
hamper the effectiveness of antiretroviral therapy (Descamps et al., 1998). Recently, it was
shown that HIV infection-related complications may vary between different subtypes, e.g.
the risk of developing HIV-induced dementia is increased in patients that are infected with
subtype D compared to patients infected with subtype A (Sacktor et al., 2009).
HIV-1 subtype B is the best-studied variant of HIV-1 owing to the available resources
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Figure 2.2: Phylogenetic relation of lentiviruses in men and non-human primates.
Reprinted from The Lancet (Simon et al., 2006) with permission from Else-
vier. The recently discovered HIV-1 group P (Plantier et al., 2009) is missing.

and infrastructure for research in its region of prevalence. The other HIV-1 subtypes clearly
deserve more attention than they have received so far. However, data collection efforts in
regions of their prevalence are less advanced than in Europe and North America. Also
the data studied in this work originates mainly for collection efforts in North America and
Central and Western Europe, hence, there exists a bias towards subtype B - simply due to
practical limitations.

The diversity of HIV poses also one of the major challenges for HIV vaccine design
(Walker and Burton, 2008). The sequence diversity within a single subtype, for example,
can reach up to 20%. Clearly, the sequence diversity is an issue especially for antibody
based vaccines that require conserved epitopes on surface proteins. For instance, in Africa
with a multitude of different circulating viruses the sequence of the envelope protein can
differ by up to 38% (Walker and Burton, 2008).



2.2 The Human Immunodeficiency Virus Type 1 9

geographic region number of major subtypes
infections risk groups

Sub-Saharan Africa 22.400 HSex A, D, F, G,
C, H, J, K, CRF

South & South-East Asia 3.800 HSex, IDU B, AE
Latin America 2.000 HSex, MSM, IDU B, BF
Eastern Europe & central Asia 1.500 IDU A, B, AB
North America 1.400 HSex, MSM, IDU B
East Asia 0.850 HSex, MSM, IDU B, C, BC
Western & Central Europe 0.850 MSM, IDU B
North Africa & Middle East 0.310 HSex, IDU B, C
Caribbean 0.240 HSex, MSM B
Oceania 0.059 MSM B

Table 2.1: Worldwide distribution of HIV-1 infections (as of December 2008), typical
modes of transmission, and prevalent HIV-1 subtypes. HSex=heterosexual,
MSM=Men who have sex with men, IDU=injection drug users. Numbers of
infections are given in millions and originate from the WHO 2009 Report on the
global AIDS epidemic. CRF=circulating recombinant form. Risk group and
subtype distribution is based on (Simon et al., 2006).

2.2 The Human Immunodeficiency Virus Type 1

The human immunodeficiency virus (HIV) received its name officially in 1986. Extensive
knowledge on HIV has been accumulated and a substantial amount of literature is available.
In the following we provide a brief summary, for further details please refer to Fields et al.
(2007) or similar reference literature.
HIV belongs of to the family of retroviruses and, more precisely, is a member of the genus

of lentiviruses, which indicates a long incubation period. Electron microscopy of particles
in infected cell cultures shows spherical entities with a diameter of 100 - 120 µm (Figure 2.3
a). A conceptual representation of the virus architecture is depicted in Figure 2.3 b). The
characteristic of retroviruses is that they store their genetic information in ribonucleic acid
(RNA) and thus require a mechanism to translate RNA to deoxyribonucleic acid (DNA),
which is the carrier of genetic information in their hosts. Each viral particle contains
two single stranded RNAs of approximately 10 kb length that are tightly bound to viral
nucleocapsid proteins and two viral enzymes (reverse transcriptase and integrase) that are
vital for a successful infection of the host cell. This complex is protected by a cone-shaped
capsid comprising approximately 2,000 copies of the capsid protein. The viral cone – also
known as the viral core – is clearly visible in the electron micrograph (Figure 2.3 a). The
viral cone is surrounded by a spherical matrix that is in turn covered by a lipid membrane.
Attached to the matrix, is the viral spike, which is responsible for target cell recognition
and cell entry.
Figure 2.4 shows the organization of the HIV genome. HIV encodes a total of 15 viral

proteins in overlapping reading frames. The majority of proteins is part of the three large
precursor proteins that have to be cleaved into functional subunits. The polymerase gene
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(a) Electron microscopy of viral particles (b) Schematic representation of an HIV virion

Figure 2.3: Electron micrograph of a budding HIV particle and mature HIV particles with
visible viral core from Fields et al. (2007) and reprinted with kind permission
from Lipincott Williams & Wilkins (a). Schematic representation of a single
HIV particle from Wikipedia (http://commons.wikimedia.org/wiki/File:
HIV_Virion-en.png) (b).

(Pol) encodes for three proteins: the protease, the reverse transcriptase, and the integrase.
The Gag gene is the precursor of four viral structural proteins: p24 (the viral capsid),
p6 and p7 (the nucleocapsid proteins), and p17 (the viral matrix). The third precursor is
encoded by the Env gene and comprises the two subunits of the viral spike, the glycoprotein
gp120 and the transmembrane glycoprotein gp41. As indicated in Figure 2.3 b) the viral
spike consists of 6 proteins: one trimer of gp41 and one trimer of gp120, which is heavily
shielded by glycans. The smaller genes encode for transactivators (Tat, Rev, Vpr), which
enhance gene expression, and other regulatory proteins (Vif, Nef, Vpu) helping the virus to
be more efficient in its reproduction and counter defense mechanisms of the host cell. For
instance, Vif disrupts the antiviral activity of the human enzyme APOBEC3G (Sheehy
et al., 2002). APOBEC3G causes G-to-A hypermutations in the genome of HIV and other
retroviruses, and thereby ultimately destroys the coding and replicative capacity of the
invading pathogen.

2.2.1 HIV Replication Cycle

Figure 2.5 depicts the replication cycle of HIV: starting from cell entry to maturation of
new infectious viral particles. The turnaround time is estimated with 1.5 days from entry
to the production of new infectious virions. The life cycle of HIV is complex and our
current understanding of each step is the result of extensive research. Nevertheless, many
details are not fully understood, yet. Thus, we focus the description of the replication
cycle on the targets for modern antiretroviral therapy. Further fascinating aspects of the
interplay between viral regulatory proteins and the host as well as the interplay of the
host’s immune system with the viral infection are omitted. For a full description of the

http://commons.wikimedia.org/wiki/File:HIV_Virion-en.png
http://commons.wikimedia.org/wiki/File:HIV_Virion-en.png
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Figure 2.4: Diagram of the genome organization of HIV. Reprinted from Freed (2004) with
permission from Elsevier.

molecular life cycle see e.g. Fields et al. (2007).
HIV enters the host cell by first binding one of its gp120 surface proteins to the CD4

receptor of the target cell. The importance of the CD4 receptor in HIV cell entry was
identified shortly after the isolation of HIV (Dalgleish et al., 1984). The CD4 receptor is
expressed on CD4+ T cells, macrophages, microglia, and dendritic cells that thereby are
the main targets of HIV. After the anchoring step, the gp120 subunit of the viral spike
undergoes a conformational change with the consequence of exposing an epitope that, in
turn, allows binding to a chemokine receptor (also called a coreceptor). The most important
coreceptors used by HIV in vivo are the chemokine receptors CCR5 and CXCR4 (Berger
et al., 1999). After coreceptor binding, another conformational change occurs in the gp41
subunit of the envelope protein. This change brings viral and host cell membranes in close
proximity with the result of membrane fusion (Esté and Telenti, 2007). Recent results
support the hypothesis that HIV primarily enters the target cell by endocytosis followed
by fusion in the endosome and not by fusion directly at the plasma membrane (see Uchil
and Mothes (2009) for a review). However, the successful fusion is followed by release of the
viral core into the cytoplasm of the target cell. Right after the viral core is uncoated, the
viral enzyme reverse transcriptase (RT) transcribes the viral RNA into a double stranded
DNA (dsDNA). Together with viral and host proteins the dsDNA forms the preintegration
complex (PIC), which is guided to the nuclear pore. Once the PIC has entered the nucleus
of the host cell, the viral enzyme integrase, which was part of the PIC, catalyzes the
integration of the viral DNA into the host chromosome. The integration of the viral DNA
into the host chromosome marks a central point in the HIV infection, as from now on the
cell is irreversibly infected.
The provirus, i.e. the integrated viral DNA, exploits the molecular machinery of the host

cell for the production of new infectious viral particles. To be precise, the viral DNA serves
as a template for the DNA-dependent RNA-polymerase II (pol II ) that produces messenger
RNA (mRNA). This mRNA is (partially) spliced and exported from the nucleus where it
is translated into the different viral (poly-)proteins. In addition, full RNA transcripts of
the complete integrated viral genome are generated and can be integrated into new virions.
The polyproteins Env and Gag/Gag-Pol are transported via different pathways to the

viral membrane where they participate in forming new viral particles. The Env precursor
protein, gp160, is glycolyzed in the endoplasmatic reticulum of the host cell, where the
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Figure 2.5: HIV replication cycle. The basic steps of the HIV replication cycle: viral entry,
reverse transcription, integration, and formation of infectious particles. See
main text for further details. Figure reprinted with kind permission of Saleta
Sierra, Department of Virology, University Cologne.

monomers also undergo oligomerization. The predominant form is a trimer. The gp160
complexes are further transported to the cell’s Golgi complex where they are cleaved into
their subunits gp120 and gp41. There, cleavage is mediated by cellular enzymes and not
by the viral protease. The heavy glycosylation of gp120 provides the means for HIV to
shield its surface protein with a sugar coat against the immune response of the host.

The Pol polyprotein is only expressed as part of the larger Gag-Pol protein, which in
turn is a result of a -1 translational frameshift (Jacks et al., 1988). The ratio of Gag to
Gag-Pol, which is approximated to be 20:1 (20 copies of the Gag polyprotein for each
Gag-Pol polyprotein), is crucial for the successful replication of HIV (Shehu-Xhilaga et al.,
2001). The HIV protease (PR) is part of Gag-Pol and only active as a dimer. In fact,
enzyme activation is initiated when the PR domains of two Gag-Pol precursors dimerize
and the complex begins with intramolecular activity followed by intermolecular activity
(Pettit et al., 2004). The shorter Gag protein is rapidly targeted to the inner surface of the
cell membrane after its synthesis. At the membrane the precursor protein is then cleaved
by the viral PR during or after budding from the host cell into its four subunits, which
then form the viral matrix, capsid, and nucleocapsid, respectively. Only fully maturated
viruses are able to successfully infect new host cells.
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2.3 Clinical progression of an HIV infection

The main infection route of HIV is via sexual transmission across a mucosal surface. The
actual risk of transmission varies and greatly depends on applied sexual practices. Male-
to-male transmissions are one order of magnitude more likely than male-to-female and
female-to-male transmissions. Further prominent routes of infection are mother-to-child
transmission (via birth and/or breast feeding) and needle sharing among injection drug
users. In the beginning of the HIV pandemic, also tainted blood transfusions were respon-
sible for new infections.
The two main markers that are used for monitoring HIV infections are the viral load

(copies of HIV RNA per milliliter (ml) blood plasma) and the CD4+ T cell count per
microliter (µl) blood. During the acute phase following primary infection, the viral load
increases rapidly and reaches a peak of 106 to 107 copies/milliliter blood. HIV directly
infects and causes the death of cells that are critical for effective immune response, and thus
the CD4+ T cell count decreases rapidly during this phase from over 1000 (as observed in
healthy individuals) to around 500. Symptoms of acute HIV infection (for example fever,
head ache, weight loss) appear about two weeks after exposure to the pathogen and are
rather nonspecific and therefore, in general, are not distinguishable from infections with
other viruses like influenza. Consequently, those symptoms are not used to diagnose an
HIV infection. Moreover, the nonspecific symptoms result in an unrecognized infection,
which in turn, leads to transmission of the virus to further individuals.
It is now known that, regardless of the route of transmission, HIV rapidly establishes a

persistent infection of the gut-associated lympohid tissue, which is also the principal site of
its replication. Arthos et al. (2008) showed that the HIV surface protein gp120 binds via
one of its loops (V2) to the receptor integrin α4β7, which in turn mediates the migration
of leukocytes to the gut (von Andrian and Mackay, 2000). Furthermore, the gp120-α4β7

complex facilitates the activation of lymphocyte function-associated antigen 1 (LFA-1) on
CD4+ T cells. LFA-1 is a central element for establishing virological synapses (Bromley
et al., 2001) and consequently paves the way for HIV cell-to-cell transmission. Right af-
ter establishing the infection in the gut, the gut-associated lymphoid tissue undergoes a
substantial depletion of CD4+ T cells. It is estimated that half of the CD4+ memory cells
are killed during the initial attack (Mattapallil et al., 2005). Picker (2006) proposed that
this depletion represents an irreversible damage to the immune system that ultimately
results in AIDS. Another characteristic of the acute phase is the establishment of a latent
viral reservoir. More precisely, HIV infects resting memory CD4+ cells that, despite the
integrated provirus, remain replication-competent. The provirus remains dormant in this
reservoir, i.e. no viral proteins are actively transcribed, thus the infected cells are not es-
pecially targeted by the immune system. In this state, the provirus can survive for decades
until eventually HIV replication is initiated and new viral particles are produced. Of note,
the latency of the virus is regulated by epigenetic mechanisms (Kauder et al., 2009). Epi-
genetics refers to the change of phenotype or gene expression based on mechanisms other
than changes in the genetic code. For instance, attachment of methyl groups to cytosines
in the DNA stably alters gene expression profiles.
Towards the end of the acute phase, the viral load drops to a level of 103 to 104 and

the immune system partially recovers from the primary attack as indicated by an increase
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Figure 2.6: Typical progression of an untreated HIV infection based on Pantaleo et al.
(1993).

in CD4+ T cells. The acute phase is followed by a phase of clinical latency where the
viral load slowly increases and the CD4 count continuously depletes. It is thought that
HIV kills CD4+ T cells directly mainly by inducing apoptosis or necrosis in infected cells.
Nevertheless, it is believed that the continuous decrease of CD4+ T cells is a result of the
combination of the persistent immune hyper-activation (Hazenberg et al., 2003) followed
by activation-induced cell death (Green et al., 2003) of T cells and the massive depletion
of mucosal CD4+ cells during the acute phase (Grossman et al., 2006).

At the point where the patient’s immune system is too weak, opportunistic diseases and
malignancies occur. Most HIV/AIDS-related complications are the result of bacterial or
viral challenges to the already depleted immune system. The diseases range from cancers,
which occur rarely among uninfected people, like Karposi’s sarcoma as a result of an
infection with human herpes virus type-8 to pneumonia induced by Pneumocystis jirovecy.
The progression of an untreated HIV infection is depicted in Figure 2.6.

AIDS follows the phase of clinical latency and is defined by either reaching a CD4 count
of less than 200 cells per µl or the manifestation of specified opportunistic infections. If un-
treated, AIDS is succeeded by death of the patient from these infections. Progression of the
primary infection to AIDS varies among patients, ranging from only six months (Markowitz
et al., 2005) to more than 25 years. One predictor of the rate of progression of the dis-
ease is the level of viral load established after one year without treatment (Lyles et al.,
2000). Two groups of patients are able to control the replication rate of the virus such that
the viral load does not exceed 5000 copies per ml (termed long-term non-progressors) or
even 50 copies per ml (termed elite or natural controllers). These patients are recruited
for genome-wide association studies that aim at uncovering the factors for their superior
control of the infection (Fellay et al., 2007).
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2.4 HIV Treatment and Drug Resistance

Since the discovery of HIV a large array of antiretroviral drugs has been developed, tar-
geting several stages of the viral life cycle. The first drug zidovudine (abbreviated ZDV or
AZT) was approved by the U.S. Food and Drug Administration (FDA) already in 1987 –
only four years after the isolation of the virus. ZDV is a nucleoside reverse transcriptase
inhibitor (NRTI) that targets the viral reverse transcriptase (RT), and thereby inhibits the
process of generating DNA from the viral RNA. The synthetization of ZDV dates back to
1964.
The introduction of the first antiretroviral drug was a milestone in HIV therapy – this tri-

umph, however, was only of short nature. Larder et al. (1989) and Larder and Kemp (1989)
reported the emergence of resistant variants of HIV after prolonged treatment with ZDV.
A major cause for the emergence of resistance is the viral RT itself, since the mechanism of
reverse transcription is error prone and the enzyme lacks a proof-reading mechanism. Gao
et al. (2004) estimated a mutation rate of HIV with 5.4×10−5 mutations per nucleotide per
round of replication (initially Mansky and Temin (1995) reported 3.4×10−5 mutations per
nucleotide per round, their result, however, was based on shorter fragments of viral RNA).
Thus, the RT eventually generates a viral variant that is less susceptible to the drug and
therefore is selected evolutionarily under treatment. By now, resistance mutations in all
viral target proteins against all available compounds have been reported (Johnson et al.,
2008).

2.4.1 Antiretroviral drugs

Since the introduction of zidovudine a multitude of anti-HIV drugs has been approved by
the FDA and EMEA (European Medicines Agency) for treating HIV infections. Table 2.2
lists all currently FDA approved drugs. The targets of those drugs and their mode of
action will be explained in the following paragraphs. Here we proceed in order of the steps
of the viral replication cycle that they block.
Despite the large number of already existing anti-HIV drugs, multiple drugs in estab-

lished and novel drug classes are under investigation. Table 2.3 lists an excerpt of currently
investigated drugs.

Entry and Fusion Inhibitors intercept the viral replication at the first possible point:
entry of the viral core into the cytosol of the host cell. Of all approved anti-HIV drugs, entry
inhibitors are the only drugs that target a host protein rather than a viral protein. The
development of entry inhibitors targeting human receptors originates from the observation
that 4%-16% of the European population (higher rates in the north and lower rates in
the south) have a homozygous ∆32 mutation in the CCR5 gene rendering the resulting
CCR5 receptor nonfunctional (Novembre et al., 2005). However, the population affected
by the genetic defect was also reported to be virtually immune against HIV infections,
while on the other hand, no severe side effects resulting from the nonfunctional receptor
are known (Novembre et al., 2005). In addition to maraviroc, which is a CCR5 inhibitor
and currently the only approved entry inhibitor, more CCR5 and also CXCR4 inhibitors
are under investigation (Esté and Telenti, 2007). Prior to the use of coreceptor blockers, it
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Generic name Abbreviation Trade name FDA approval

Nucleoside and nucleotide reverse transcriptase inhibitors (NRTIs)
zidovudine ZDV, AZT Retrovir 1987
didanosine ddI Videx 1991
zalcitabine ddC Hivid 1992-2006
stavudine d4T Zerit 1994
lamivudine 3TC Epivir 1995
abacavir ABC Ziagen 1998
tenofovir TDF Viread 2001
emtricitabine FTC Emtriva 2003

Non-nucleos(t)ide reverse transcriptase inhibitors (NNRTIs)
nevirapine NVP Viramune 1996
delavirdine DLV Rescriptor 1997
efavirenz EFV Sustiva 1998
etravirine ETR, ETV Intelence 2008

Protease inhibitors (PIs)
saquinavir SQV Fortovase, Invirase (SQV + RTV) 1995
ritonavir RTV Norvir 1996
indinavir IDV Crixivan 1996
nelfinavir NFV Viracept 1997
fos-/amprenavir FPV/APV Lexiva/Agenerase 2003/1999
lopinavir LPV Kaletra (LPV+RTV) 2000
atazanavir ATV Reyataz 2003
tipranavir TPV Aptivus 2005
darunavir DRV Prezista 2006

Fusion inhibitors (FIs)
enfuvirtide ENF, T-20 Fuzeon 2003

Entry inhibitors (EIs)
maraviroc MVC Selzentry 2007

Integrase inhibitors (InIs)
raltegravir RAL Isentress 2007

Table 2.2: Antiretroviral drugs approved by the FDA. Table is based on information
from http://aidsinfo.nih.gov.

http://aidsinfo.nih.gov
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Generic name Abbreviation Phase Comment

NRTIs
apricitabine ATC III
elvucitabine ACH-126443 II
racivir RCV II

NNRTIs
rilpivirine TMC278 III
lersivirine UK-453061 II

MIs
bevirimat BVM II
vivecon MPC-9055 II

EIs
AMD11070 AMD070 II CXCR4 antagonist, trial was halted
vicriviroc VCV III CCR5 antagonist
ibalizumab TNX-355 II monoclonal antibody targeting CD4

PRO 140 II monoclonal antibody targeting CCR5
InIs

elvitegravir EVG III high cross resistance with RAL

Table 2.3: Some investigational antiretroviral drugs. Table is based on information
from http://aidsinfo.nih.gov and http://www.aidsmeds.com.

is necessary to determine which coreceptor is used by the virus for entering (see Lengauer
et al. (2007) for a review).
A further mechanism of preventing HIV from entering a target cell is to inhibit fusion

of virus and host cell membranes. The currently only licensed fusion inhibitor (FI), En-
fuvirtide (abbreviated ENF or T-20), is a synthetic peptide that mimics the amino acids
127-162 of gp41. ENF binds to a subunit of gp41 and therefore prevents the required con-
formational change that facilitates the fusion of host and viral membrane. Drug resistance
mutations are usually located in the ENF-binding site on gp41 (direct resistance) or confer
resistance indirectly via mutations in other regions of gp41 and even in gp120 (Miller and
Hazuda, 2004). The latter mechanism is less well understood. The two major drawbacks
of ENF are its price (approximately 2,200 Euros for one month of treatment compared
to e.g. 400 Euros for one month of ZDV treatment in Germany; price estimates are
based on retail prices at http://www.docmorris.de and the recommended daily dose at
http://aidsinfo.nih.gov) and the way of administration: ENF has to be injected twice
daily, and thereby causing a number of skin irritations.

Reverse Transcriptase Inhibitors interfere with the process of generating a DNA copy of
the viral genome. The reverse transcriptase (RT) functions as a heterodimer comprising
the p66 and p51 subunits. The p66 subunit is the full product of the RT region of the Pol
gene, while the p51 subunit is obtained from the p66 unit by removal of a fragment at the
C-terminus. This cleavage process is catalyzed by the viral protease. The p51 subunit plays
only a structural role while the larger unit has two enzymatic centers: a DNA polymerase

http://aidsinfo.nih.gov
http://www.aidsmeds.com
http://www.docmorris.de
http://aidsinfo.nih.gov
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and a ribonuclease H (RNaseH). The DNA polymerase copies either viral RNA or DNA,
while the RNaseH is responsible for the degradation of tRNA primers and genomic RNA
present in DNA-RNA hybrid intermediates. There are two classes of reverse transcriptase
inhibitors that are distinguished by their mode of action.
The group of nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs) are nucleo-

side and nucleotide analogs that are incorporated by the viral RT into the newly synthesized
DNA strand. These analogs lack a free 3’-hydroxyl group and therefore terminate the tran-
scription process after their incorporation into the DNA. The cost of NRTIs for one month
of treatment varies from 300 Euros to 500 Euros (all prices apply to Germany only as they
are based on information from http://www.docmorris.de). Three different mechanisms,
associated with specific sets of mutations, used by HIV to lower the effect of NRTIs have
been observed (see Sluis-Cremer et al. (2000) for a review). These mechanisms involve
improved discrimination between NRTIs and their real dNTP counterpart, enhanced re-
moval of the chain terminating NRTI at the 3’ end, and alteration in RT-template primer
interactions.
Non-nucleoside reverse transcriptase inhibitors (NNRTIs) form the second group of RT

inhibitors. NNRTIs are small molecules that inhibit the RT by binding to a hydrophobic
pocket in the proximity of the active site of the enzyme. Once the inhibitor is bound, it
impairs the flexibility of the RT resulting in its inability to synthesize DNA. Resistance
to NNRTIs occurs by mutations that reduce the affinity of the inhibitor to the protein.
Usually, a single mutation selected by one NNRTI is sufficient to confer complete resistance
to all compounds of the drug class (Clavel and Hance, 2004). This phenomenon is termed
cross-resistance. Thus, newer inhibitors like etravirine (ETR) are designed such that they
still exhibit high affinity in the presence of mutations induced by other NNRTIs. One
month of NNRTI treatment costs about 450 Euros for older drugs and 650 Euros for
recently approved products.
Figure 2.7 b) shows the structure of a functional heterodimer with typical NRTI and

NNRTI resistance mutations highlighted in the p66 subunit.

Integrase Inhibitors aim at preventing the enzyme from integrating the viral DNA into
the host chromosome. The integrase (IN) functions as a tetramer. Each monomer, which is
cleaved out by the PR from the C-terminal portion of the Gag-Pol polyprotein, has three
domains. The N-terminal domain contains a HH-CC zinc finger motif that is partially
responsible for multimerization, optimal activity, and protein stability. The DDE motif in
the core domain forms the catalytic triad. The C-terminal domain binds non-specifically
to DNA with high affinity. So far it was not possible to crystallize the entire 288-amino-
acid long protein due to its low solubility and propensity to aggregate. As an intermediate
solution, the three domains have been crystallized individually. Moreover, structures of the
N-terminus plus the core domain (Wang et al., 2001) and the core domain plus C-terminal
domains (Chen et al., 2000) have been generated. The integration of the viral DNA requires
three subsequent steps. During the 3’ processing step the integrase removes a dinocleotide
from the long terminal repeat of each HIV-DNA strand. This step is followed by a process
termed strand transfer occurring in the nucleus where the integrase cuts the cellular DNA
and covalently links the viral DNA 3’ ends to the target DNA. The final step, the required
gap repair, is believed to be carried out by host DNA repair enzymes (Yoder and Bushman,

http://www.docmorris.de
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2000).
Currently only one FDA approved integrase inhibitor (INI) is available. Raltegravir

(RAL) is a strand transfer inhibitor that interferes with the process by binding to the DDE
motif in the catalytic domain (Hazuda et al., 2000). Successful inhibition of the integration
process leaves the viral DNA in the nucleus, where it is recircularized by the host’s repair
enzymes. Hence, the HIV life cycle is interrupted. The mechanism of resistance of HIV
against INIs is still subject to investigation. Some clinically relevant mutations are found
to increase the rate of dissociation of the inhibitor from the IN-DNA complex (Grobler
et al., 2009). The price for one month of raltegravir treatment can be assessed with 1,100
Euros.

Protease and Maturation Inhibitors interfere with the process of forming new infectious
viral particles. The viral enzyme mainly engaged in virion maturation is the viral pro-
tease (PR). The PR cleaves the larger precursor proteins Gag and Gag-Pol into smaller
functional units. Unlike its cellular relatives the viral PR acts as a true homodimer. Each
monomer comprises 99 amino acids and the active site is formed by a cleft in between these
symmetrically arranged monomers (Figure 2.7 a). The cleft accommodates the substrate
to be cleaved and the two flexible flaps stabilize the substrate in the active site. The active
site has room for a peptide of approximately seven amino acid length.
Because of its important role in virion maturation, the viral PR was soon subject of in-

vestigation for potential inhibitors. Protease inhibitors (PI) are small molecules that bind
to the active site of the protease and therefore compete with its natural substrates. In
fact, the design of protease inhibitors constitutes a good example of structure-based drug
design, since the chemical structure of the inhibitors were chosen to mimic the structure
of the viral peptides that are naturally recognized and cleaved by the protease. There are
two mechanisms that result in resistance of HIV against PIs. The first one is the exchange
of amino acids in the PR such that the affinity to the inhibitor is decreased while the
natural substrates can be bound efficiently (Clavel and Hance, 2004). Modifications of the
affinity to the natural substrate alter also the efficiency of the protease. Thus, the second
mechanism introduces compensatory mutations aiming at reestablishing the efficiency of
the enzyme while maintaining resistance against the inhibitor. These compensatory mu-
tations can occur either in the protease or in its substrate, i.e. at cleavage sites (Nijhuis
et al., 2007). As in the case of NNRTIs, the new generation of PIs shows antiviral activity
in the presence of mutations selected earlier by other PIs. The expenses for one month of
PI treatment range from 800 Euros to 1200 Euros.
Another class of drugs that interfere with the production of mature virions are matura-

tion inhibitors (MIs). Unlike PIs they bind to the substrate of the protease instead of to
the protease itself (Salzwedel et al., 2007). Currently no MI is approved by the FDA. The
most advanced MI, bevirimat, prevents cleavage by the protease at the junction between
the capsid and a spacer in the Gag precursor protein. Unfortunately, it was shown that a
natural and frequently occurring polymorphism in Gag inactivates the antiviral activity of
bevirimat (McCallister et al., 2008; Baelen et al., 2009), and therefore gives the inhibitor
an unfavorable perspective (Verheyen et al., 2009).
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(a) HIV protease (b) HIV reverse transcriptase

Figure 2.7: Structural models of viral targets for antiviral therapy rendered with the
software PyMOL. (a) Protease with bound inhibitor Amprenavir. The two
monomers of the functional homodimer are colored differently (PDB entry
3EKV). (b) Structural model of the functional RT dimer comprising the sub-
units p66 (mangenta) and p51 (cyan) from PDB entry 1RTJ. Typical NRTI
resistance mutations are highlighted in orange, and NNRTI resistance muta-
tions in green.

Future Developments. Novel drugs are under investigation in nearly all established drug
classes described in the previous paragraphs. However, also novel targets or mechanisms are
under ongoing investigation. The studied approaches range from new ways of attacking old
targets, e.g. small peptides that prevent formation of an active RT dimer by blocking the
binding of the p51 and p66 subunits (Agopian et al., 2009), aptamers targeting the RNaseH
activity of the RT (Andreola et al., 2001), or integrase binding inhibitors with activity at
the 3’ processing step (Thibaut et al., 2009), to more exotic approaches. Sarkar et al.
(2007) reported a successful excision of the integrated provirus from the host chromosome.
A successful drug based on this mechanism would eventually allow to cure HIV infections,
rather than (merely) delaying disease progression. A further possibility to eradicate the
latent reservoirs of HIV is to trigger the transition from the latent phase to the active
phase by targeting the epigenetic regulation (Kauder et al., 2009). Finally, targeting the
frame shifting that maintains the ratio of Gag to Gag-Pol required for the generation of
infectious virions is an option (Gareiss and Miller, 2009).

2.4.2 The Era of Highly Active Antiretroviral Therapy

The rapid resistance development of HIV against individual drugs required a new pharma-
ceutical strategy. Soon after the release of ZDV other nucleoside analogs were marketed
and dual therapy comprising two NRTIs was the first attempt to control viral replica-
tion (Hammer et al., 1996). The approach of combining several antiretroviral compounds
benefited the most from the release of drugs in other drug classes: NNRTIs and PIs.
This marks also the start of the era of highly active antiretroviral therapy (HAART) in
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1995. HAART combines a minimum of three drugs from at least two different drug classes
(Clavel and Hance, 2004). A typical HAART combines two NRTIs plus either one PI or
one NNRTI (Dybul et al., 2002). The rationale of HAART is to maximally suppress viral
replication and thereby delay the progression of the infection to AIDS and death. The
use of different drug targets provides the means of erecting a higher barrier for HIV to
escape the regimen by developing resistance mutations. The success of HAART is based
on the fact that HIV has to acquire multiple resistance mutations against the different
drugs in the regimen. Here, the use of multiple drug classes ensures that different sets
of resistance mutations are required for a successful escape. Thus, the combination of a
successfully suppressed viral load, i.e. few viruses that can perform the “experiment”, and
a high genetic barrier to resistance, i.e. requirement of multiple mutations, substantially
slows down the progression of the infection.
The success of HAART was manifest in the immediate decline in HIV related mortality

following its introduction (Mocroft et al., 1998; Crum et al., 2006). Despite its success,
HAART presents a burden to the patients as many pills have to be taken on a daily basis.
Moreover, a strict adherence to the treatment schedule is required for optimal suppression
of viral replication. In addition, every drug comes with a extensive list of side effects ranging
from headache and diarrhoea to lipodystrophy (fat redistribution) and even peripheral
neuropathy (nerve damage) and therefore can seriously impair the patient’s quality of life.
Given that currently there is no cure for HIV and antiretroviral treatment is a life long
struggle, pharmaceutical companies are aiming at improving pharmacokinetics and the side
effect profile of the drugs with the aim to render treatment more bearable. Nowadays, some
antiretroviral combination therapies are available as a “once-daily” treatment delivered
by a single pill. For example, the drug Atripla comprise three antiretroviral compounds
(FTC+TDF+EFV) and is typically used for first-line treatment (one month of treatment
costs approximate 1,300 Euros).
A further milestone in HAART was the discovery that the protease inhibitor ritonavir

interferes with the liver enzyme cytochrome P450 (Kumar et al., 1996). This enzyme
is involved in the metabolic processing of most protease inhibitors. Thus, the use of a
small dose of ritonavir inhibits the liver enzyme, and helps to maintain optimal levels of
other protease inhibitors in the patient’s blood for a longer period of time. The boosting
of protease inhibitors with ritonavir is standard as of 2001 – following the introduction
of Kaletra (LPV+RTV) – and is usually denoted by PI/r. Currently, pharmaceutical
companies are searching for further compounds achieving the same effect as ritonavir but
with fewer side effects.
Despite of today’s potency of HAART, drug resistance is still an issue. By acquiring drug

resistance mutations the virus regains the ability to replicate in the presence of the drugs
leading to a high viral load, which marks virological failure. Furthermore, virological failure
usually precedes immunological failure marked by substantial decrease of CD4+ T cells.
A factor that contributes to resistance development in patients undergoing HAART is
incomplete adherence (Harrigan et al., 2005; Glass et al., 2008). Patients not taking their
drugs at all do not impose enough selective pressure on the virus. Conversely, if the
drugs are taken correctly and optimal drug levels are always reached, then the virus has
little chance to develop mutations. On the other hand, drugs taken at irregular intervals
leave the opportunity of developing mutations that are subsequently selected due to the
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selective pressure. Unfortunately, drug resistance may also appear in patients with perfect
prescription refill rates. Harrigan et al. (2005) found at least one abnormally low drug
plasma concentration in 36% of the patients with 95% prescription refill rate (i.e. almost
perfect adherence to treatment). This points to either host genetic factors lowering the
amount of available drug in the patient’s body or to incomplete adherence during the
daily schedule, e.g. all drugs for a day are taken in the morning. A major factor towards
non-adherence are again the side effects of the compounds. Patients occasionally remove
drugs from an effective HAART without consulting with their physician in order to achieve
remedy for troubling side effects.

2.5 HIV Therapy Management

The circumstance that HIV evolves into drug resistance is further complicated by the fact
that resistance mutations selected by one drug also confer resistance against other drugs
from the same class. This phenomenon of cross-resistance is most pronounced among
NNRTIs where, prior to the release of etravirine, a single mutation could render the com-
plete drug class useless. The second generation of NNRTIs and PIs has therefore been
designed in a way that they retain antiviral activity in the presence of commonly selected
resistance mutations by older drugs.
In order to ensure an effective treatment the extent of drug resistance has to be appraised

prior to onset of the regimen. Resistance of HIV against antiretroviral drugs can be assessed
by two different approaches. The first approach, phenotyping, measures the resistance of
the virus in an experimental assay (see e.g. Walter et al. (1999) and Petropoulos et al.
(2000)). In such assays the replication of the patient’s virus (clinical isolate) is compared to
the replication of a reference wild type strain in the presence of a varying concentration of
the drug. The concentration that cuts the replication rate in half is termed 50% inhibitory
concentration (IC50). The fold-change (FC) in resistance, also often referred to as resistance
factor (RF), is then simply the quotient between the IC50 of the clinical isolate and the
reference virus:

FC =
IC50(clinical isolate)
IC50(reference isolate)

.

Figure 2.8 depicts an example of dose-response curves generated by a phenotypic resistance
test. The experiment has to be carried out for every single drug, thus rendering the whole
process time- and cost-intensive – results are available within weeks and costs are in the
range of 1,000 Euros. Moreover, owing to the nature of the assay the test is restricted to
few specialized laboratories with sufficient security level and expertise.
The second method focuses on the genetic sequence of the viral drug targets. In geno-

typing the viral sequence is obtained using standardized fast and cheap methods (result
available within days at costs of 100 Euros) that can be carried out in virtually every
laboratory. The outcome of genotyping is simply a list of mutations compared to a wild
type virus and clearly much harder to interpret in terms of drug resistance as the single
number per drug generated by phenotyping. In order to assist the interpretation of the
viral genotype the international AIDS society (IAS) maintains an annually updated list of
resistance mutations (Johnson et al., 2008). This list, however, mainly informs about the
mere existence of mutations, the necessary knowledge about how many of the mutations
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Figure 2.8: Dose-response curve of a phenotypic drug resistance test. Reprinted by permis-
sion from Macmillan Publishers Ltd: Nature Reviews Microbiology (Lengauer
and Sing, 2006), copyright (2006).

and in which combination are required to confer intermediate or complete resistance is
not provided. The missing semantics of the resistance mutations is introduced by rules-
based interpretation systems developed by virologists and clinicians (see Lengauer and Sing
(2006) for a review).
The benefit of resistance tests (genotypic or phenotypic) has been demonstrated in

prospective clinical trials. For example, Durant et al. (1999) showed that treatment de-
cisions based on a genotype have a significantly better outcome than uninformed read-
justments of medication. Moreover, Oette et al. (2006) showed that genotypic resistance
analysis is beneficial even in treatment-naïve patients, i.e. patients that have never received
any antiretroviral drug. The observed improvement is a direct consequence of transmitted
drug resistance mutations, where patients are infected with already resistant viral strains.
The advantage of resistance testing and the broad availability of genotyping led to routine
sequencing of relevant parts of the viral genome. The most relevant part comprises the 99
amino acids of the viral protease and up to the first 240 amino acids of the RT. These data
are now generated routinely in laboratories for genotype based resistance tests and are
stored together with frequently obtained markers of the treatment success (viral load and
CD4+ T cell count) and detailed information about the patient’s regimen (drugs, start,
stop, cause of stop) in databases (Rhee et al., 2003; Roomp et al., 2006). These data col-
lections provide a rich basis for further developments in terms of resistance interpretations
as we will show in the remainder to this thesis.

2.5.1 Rules-Based Interpretation Systems

The need for adding semantics to the resistance mutations promoted the development of
many rules-based interpretation systems. The rules are generated by expert panels com-
prising virologists and clinicians on the basis of genotype-phenotype relationships, publica-
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tions, clinical response (in the form of mutations observed in patients failing antiretroviral
therapy), and personal experience. The predictions by different rules-based interpretations
are often discordant owing to their history of origins, which is manifest in the differing sets
of rules and design principles. Frequently the discordant predictions lead to confusion by
users consulting multiple decision support systems (De Luca et al., 2003). Moreover, the
degree of disagreement can also depend on the HIV-1 subtype (Snoeck et al., 2006) thereby
reflecting the general lack of knowledge on non-B subtypes. The rule sets are maintained
regularly in meetings of the expert boards, and the rules have to be updated because of
the ongoing release of new antiretroviral drugs. Rule sets for novel compounds have to be
added as well as the impact of mutations selected by new compounds on the established
drugs has to be studied. Thus, over time the rules undergo refinement that reflects the
state-of-the-art knowledge on HIV drug resistance.
Nowadays, antiretroviral therapy comprises multiple drugs. The decision support sys-

tems, however, provide only classifications for individual drugs. In order to overcome this
limitation, the verbal classification provided by the tools is often mapped to a rating be-
tween 0 and 1 assessing the susceptibility of the virus against an individual drug. The
ratings of individual drugs are summed to form a genotypic susceptibility score (GSS) that
usually ranges between 0 and the number of drugs in the regimen (De Luca et al., 2003).
For treatment-naïve patients clinicians usually aim at achieving a GSS of 3.0 (i.e. three
fully active drugs) while for treatment experienced patients with heavily mutated viruses
a GSS of 2.0 is recommended.
The rules-based systems enjoy great popularity among clinicians and virologists involved

in HIV patient care, mainly owing to the fact that they are not providing “black box”
predictions. More precisely, the basis of the classification, i.e. the rule sets, are freely
available (for most systems) and thereby allow users to follow the rationale behind the
decision. In the following we provide a brief overview about the most popular rules-based
decision support systems.

ANRS 07/2009 V18 The interpretation system provides a three-level classification of drug
resistance and is developed by the French ANRS (National Agency for AIDS Research)
AC 11 Resistance group. Their set of rules is now available in version 18 on the web site:
http://www.hivfrenchresistance.org/ (Meynard et al., 2002).

Rega Version 8.01 Is a rule set maintained by the Rega Institute of the Catholic Univer-
sity in Leuven. It also provides a three-class rating. In contrast to the ANRS system it
applies a weighted score for the conversion from the verbal classification (i.e. susceptible,
intermediate, and resistant) into the scores that are then used to compute the GSS. Pre-
cisely, the score for boosted PIs is 0.75 and 1.5 instead of 0.5 and 1 for intermediate and
fully susceptible viruses, respectively, and the score corresponding to intermediate resis-
tance of INIs, EIs and some NNRTIs is 0.25 instead of 0.5. The specifications are available
at http://www.rega.kuleuven.be/cev/ (Van Laethem et al., 2002).

HIVdb Version 6.0.5 The HIVdb system is maintained by the Stanford university and
available at http://hivdb.stanford.edu. Unlike in the other systems, each mutation
receives a score between -10 and 60 and therefore the systems resembles rather a linear

http://www.hivfrenchresistance.org/
http://www.rega.kuleuven.be/cev/
http://hivdb.stanford.edu
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model with expert-derived weights than a rules-based system. Negative scores indicate
resensitization effects, i.e. a virus with such mutations is more susceptible against that
particular drug in the presence of the mutation. Based on the weights the resistance
against each drug is assigned to one of five possible classes (Rhee et al., 2003). Drugs scored
with 0-9 are estimated to be “Susceptible”, 10-14 indicates “Potential low-level resistance”,
while 15-29 and 30-59 correspond to “Low-level resistance” and “Intermediate resistance”,
respectively. Values of 60 or greater indicate “High-level resistance”. Moreover, the web
service provides implementations of other rule sets like ANRS and Rega and additionally
offers the option to use a personalized rule set.

HIV-grade Version 12-2008 HIV-grade is an interpretation system maintained by HIV-
grade e.V. an association of German clinicians and virologists. Like HIVdb it provides the
possibility to compare different systems (all those mentioned above including geno2pheno
described in Section 2.5.2). HIV-grade differs from the other systems by providing special
rules for some drugs. These special rules consider which other drugs are part of the
combination. In particular, the additional rules are aiming to capture mutations with
resensitization effect and require that the drug selecting for the resensitization mutation
is maintained in the regimen for keeping up the selective pressure. The susceptibility
for each drug is provided in a three-class system. The web service is available at http:
//hiv-grade.de.

AntiRetroScan version 2.0 The AntiRetroScan algorithm is maintained by the Italian
Antiretroviral Resistance Cohort Analysis (ARCA) consortium (Zazzi et al., 2009). Like
HIVdb it provides five resistance classes and like the Rega rules it applies different weights
for different drug classes that should be used to compute a GSS. The rule set is available
at http://www.hivarca.net/includeGenpub/AntiRetroScan.htm.

Proprietary Systems In addition to the free decision support systems introduced in
the previous paragraphs, there also exists a number of proprietary rule sets that are
part of diagnostic kits. Those kits usually include a sequencing machine and primers
needed for the sequencing. Moreover, the interpretation software has to be approved
by the FDA. An example of a proprietary system is the ViroSeq (Version 2.8) rule set,
which is developed by Celera Diagnostics and provides three output categories (http:
//www.celeradiagnostics.com/cdx/ViroSeq). The tool accompanies the ViroSeq HIV-1
Genotyping System developed by Abbott. Likewise, the GuideLines Rules (Version 14) are
updated annually by an independent expert panel and accompany the TRUGENE HIV-1
Genotyping Assay offered by Siemens (http://www.medical.siemens.com/).

2.5.2 Predicting the Drug Resistance Phenotype from Genotype

Currently, there exists a multitude of expert-based decision support systems. The systems
frequently disagree on the classification results, which is no surprise given the different de-
sign principles and experts involved in the numerous boards. However, there has been the
desire to base the classification of drug resistance on a more objective foundation. Obvi-
ously, an objective criterion of drug resistance is the phenotypic drug resistance as measured

http://hiv-grade.de
http://hiv-grade.de
http://www.hivarca.net/includeGenpub/AntiRetroScan.htm
http://www.celeradiagnostics.com/cdx/ViroSeq
http://www.celeradiagnostics.com/cdx/ViroSeq
http://www.medical.siemens.com/
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in vitro by experimental assays. There are two frequently used tools that predict pheno-
typic drug resistance from the viral genotype. One system, VircoTYPE, is proprietary and
maintained by the company Virco BVBA (Mechelen, Belgium), the other, geno2pheno,
is a freely available web service offered via http://www.geno2pheno.org (Beerenwinkel
et al., 2002, 2003a). Both systems use statistical learning to infer drug resistance models
from matched genotype-phenotype pairs. Application of these models allows to infer the
more expensive and objective information on the basis of the cheap and easily available
genotype.
The first version of geno2pheno used decision trees (Breiman et al., 1984) to classify

the virus as resistant or susceptible with respect to several drugs. The training data for the
initial models comprised approximately 450 genotype-phenotype pairs (Beerenwinkel et al.,
2002). The decision trees achieved moderate prediction performance but demonstrated in
an appealing way, how rules of drug resistance can be automatically derived from data.
Precisely, decision trees are a white box classifier, i.e. in addition to the classification result
the user can learn what input led to the final decision, as opposed to black box models
like neural networks and support vector machines (SVMs) with non-linear kernels (Boser
et al., 1992). In a later version of geno2pheno a SVM-based prediction was added to
the web service and the models were trained on approximately 650 genotype-phenotype
pairs (Beerenwinkel et al., 2003a). The SVM exhibited better prediction performance
than the decision trees and allowed to solve a regression problem, i.e. predicting the FC in
resistance rather than only a class label. Because linear SVMs cannot operate on categorical
data, e.g. amino acid sequences, the viral genotype was represented as binary vector, with
one indicator for every possible amino acid at each sequence position. Hence, the encoding
required 20 times the length of the amino acid sequence. The model interpretation of
SVMs, however, is not as trivial as in the case of decision trees. Based on the work by Sing
et al. (2005b) the linear SVM models for the individual drugs could be interpreted and a list
of scored mutations (main contributers to observed resistance) is now provided with every
prediction (for details see Section 3.1). The current version of geno2pheno is trained on
approximately 1,000 genotype-phenotype pairs per drug.
VircoTYPE uses also a linear model but, unlike geno2pheno, uses linear regression with

pairwise interaction terms for mutations. The statistical learning task was carried out on
a median of 46,100 genotype-phenotype pairs per drug (Vermeiren et al., 2007). Again,
the use of a linear model facilitates model interpretation. In contrast to geno2pheno,
VircoTYPE is a commercial tool that charges the user for every prediction.

2.6 Further Advancements

Since the first methods that predict in vitro drug resistance have been published, this task
was subject of numerous publications. The wealth of publications was also boosted by a
freely available genotype-phenotype dataset published by Stanford’s HIVdb (Rhee et al.,
2006). The publications range from use of established statistical learning models like sim-
ple linear models (Wang et al., 2004), linear models including interaction terms (Vermeiren
et al., 2007), and rules-learning algorithms (Kierczak et al., 2009) to the development of
novel techniques like non-parametric methods (DiRienzo et al., 2003) and machine learning
approaches aiming at the discovery of patterns of resistance mutations (Saigo et al., 2007).

http://www.geno2pheno.org
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Other approaches extended the genotype-phenotype relationship by incorporating descrip-
tors of the antiretroviral drug in the prediction model (Drăghici and Potter, 2003; Lapins
et al., 2008). Additionally, methods from docking and molecular dynamics simulation were
used to compute the binding energy of PIs to variants of the protease. The binding en-
ergy turned out to be a good predictor of resistance without requiring a training step nor
training data (Jenwitheesuk and Samudrala, 2005). These systems, however, represent a
proof-of-concept and are not used as clinical decision support tools.
Despite all the approaches for predicting in vitro drug resistance, the overall aim is

still to infer clinical in vivo response of the patient to the drugs. Thus, the estimation of
relevant cutoffs is an essential part for establishing a useful prediction system. The expert
derived rules-based systems, on the other hand, mainly aim at interpreting resistance
mutations in terms of clinical response and consequently have no need for relevant cutoffs.
Nonetheless, all approaches have in common that they only classify single drugs as resistant
or susceptible, but what lies at the heart of the problem is the prediction of response to
a combination of drugs. In fact, HIV experts have discouraged inferring response from
genotype via the intermediate step of first predicting the resistance phenotype (Larder
et al., 2007; Brun-Vézinet et al., 2004).
In contrast to this criticism, we could show that predicted phenotypes – using the Vir-

coTYPE system – combined with clinically relevant cutoffs are at least as predictive as
several expert derived rule sets. Additionally, predictive accuracy could be further en-
hanced for all systems by weighting individual drugs using statistical learning methods
instead of the simple summation usually applied to derive a GSS or PSS (Altmann et al.,
2009b). Moreover, statistical learning allowed to include predictions by multiple interpre-
tation systems to infer virological response. In fact, combinations of predicted phenotypes
with expert predictions showed a slight improvement, which could also be confirmed on
a large independent test set. In contrast, combinations of only rules-based predictions
showed no added value over the use of a single system. In this study we also evaluated the
importance of predictions for single drugs in terms of response to antiretroviral treatment.
Indeed, the benefit of statistical learning originated from the different weighting of drugs
and confirms earlier results (Swanstrom et al., 2004). This weighting is presumably the
result of the abundance of the drug in the training data, its potency, the accuracy of the
prediction algorithm for that drug, pharmacokinetics (e.g. the forgiveness of a drug when
a dosage was missed or taken too late), and further factors adding to the success of the
drug in vivo.
Given a sufficient amount of data, it is possible to develop models that directly pre-

dict response to antiretroviral combination using genetic information and the drugs in the
treatment. Such models thereby circumvent the need to first assess resistance against sin-
gle compounds and then subsequently combine the single predictions to a score for the
complete regimen. A further advantage is that such direct models can learn negative and
positive pharmacokinetic interactions between drugs from the data. Indeed, there exists
a large number of interactions between the different drugs (see Boffito et al. (2005) for a
review), ranging over different drug classes and even to non-anti-HIV drugs (e.g. all drugs
metabolized by cytochrome P450 are affected by ritonavir boosted PIs). The worst inter-
actions between drugs in terms of drug resistance are effects that lower the bioavailability
of one or more compounds of the combination treatment: frequent suboptimal levels of
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a drug in the blood plasma provide the right mixture of selective pressure and extent of
viral replication to eventually generate resistant viruses. An online repository providing
lectures and overviews on pharmacokinetic interactions is maintained by the Liverpool HIV
Pharmacology Group (http://www.hiv-druginteractions.org/).
Plasma levels of drugs can also be influenced by the genetic predisposition of the host.

For example, Mahungu et al. (2009) showed that a mutation in cytochrome P450 has a
positive influence on the plasma level of the NNRTI nevirapine. Hence, consideration of
host genetics during the selection of compounds for a combination therapy can yield further
improvements. On the other hand, severe adverse effects can be increased depending
on host genetics, e.g., the patient immunotype HLA-B*5701 is strongly associated with
hypersensitivity to the NRTI abacavir (Mallal et al., 2008). Still, despite its evident benefit,
pharmacogenetic testing is currently not widely applied.
A further host-specific aspect not considered by current tools is the presence of co-

infections with other viruses (e.g. HBV) or other (chronic) diseases that require medication.
Again, compounds used to treat other diseases may limit the efficacy of anti-HIV drugs or
might add limitations in the selection of anti-HIV drugs.
Further important information is neglected by the restriction of the resistance analysis

to the baseline genotype alone: archived resistance mutations in the viral reservoirs (latent
viruses). Resistance mutations selected by earlier treatments can disappear from the viral
population as soon as the selective pressure is removed. For instance, protease resistance
mutations disappear in the absence of protease inhibitors because the protease is more
efficient without those resistance mutations. Increased efficiency translates into a higher
number of infectious viruses that eventually outnumber the protease resistant variants. The
mutations, however, persist in viral reservoirs and are rapidly reselected after reappearance
of the selective pressure by reusing the drug. Consequently, just studying the most recent
genotype might miss important mutations. And indeed, the patient’s treatment history has
long been recognized as valuable information (Bratt et al., 1998), and recently it has been
shown that inspection of previous genotypes helps to explain response to antiretroviral
combination therapy (Zaccarelli et al., 2009).
A quantitative analysis of the viral population with new sequencing techniques revealed

advantages in predicting the coreceptor usage phenotype from genotype (Däumer et al.,
2008). In terms of drug resistance, the interest is mainly on resistance mutations that are
only present in a minority of the viral population at the onset of the treatment. Minorities
might increase the risk of selecting that resistance mutation early after treatment start.
Hence, the question is, if minorities are harmful for the success of treatment at all, and
if so, what threshold of the minority leads to rapid selection of resistant variants. Using
standard Sanger sequencing (also called bulk-sequencing) a minority in the population
can only be detected, if it accounts at least for 20% in the overall sample. In contrast,
ultra-deep sequencing allows to determine the sequence of individual viruses. Hence, here
the resolution is mainly bound by the cost of the experiment. Initial studies using ultra-
deep sequencing demonstrated that resistance mutations found in minorities of the viral
population correlate well with previous antiretroviral therapies and can therefore provide
information on archived resistance mutations even in the absence of treatment records (Le
et al., 2009).
Eventually, every known drug combination fails due to acquired drug resistance muta-

http://www.hiv-druginteractions.org/
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tions. The fact that anti-HIV therapy is a life-long effort paired with the limited number
of antiretroviral drugs and the cross-resistance between them, raises the need to consider
different strategies of effectively using the available array of compounds. For example, one
could follow a “hit-hard” strategy and apply one drug from each class, which will probably
lead to a very long lasting successful treatment (e.g. six years), but once it fails there
are resistance mutations against drugs from all classes. Consequently, only a very limited
number of drugs is available after treatment failure. On the other hand, one can restrict
the treatment to two drug classes, like in standard HAART, which remains effective for e.g.
three years. The fact that other drug classes have been spared, allows for multiple repeti-
tion of the medium term success. More specifically, one could optimize the order in which
drugs of one class should be administered for minimizing the impact of cross-resistance.
This planning of sequences of treatments, or therapy sequencing, aims at prolonging the
patient’s life.
Summing up, improvement over state-of-the art treatment guidance can be achieved by:

1. Construction of models that predict in vivo response to antiretroviral combination
therapy and thereby capture interactions between drugs and between drugs and mu-
tations in vivo.

2. Inclusion of features of viral evolution for assessing the risk of the virus to escape a
putative treatment by developing further mutations.

3. Incorporation of data on the patient’s treatment history for assessing the risk of
resistance mutations archived in viral reservoirs.

4. Consideration of host specific characteristics ranging from genetic factors to co-
infections for addressing the interactions between drugs and host (pharmacogenetics)
and virus and host (e.g. immune control)

5. Investigation of the impact of minorities in the viral population on the treatment
outcome and resistance development using novel sequencing techniques.

6. Generation of personalized treatment schedules that ensure the optimal use of the
available array of antiretroviral drugs.

This thesis addresses some of these issues. Dealing with points four and five, for example,
requires novel data: presence of co-infections or genotyping of the patient and sequencing
the viral quasi species, respectively. These data are not routinely collected in treatment
databases, and the corresponding issues are therefore not addressed. The objective of the
thesis is the inference of virological response in vivo directly from the viral genotype, the
applied drug combination, features derived from the viral genotype, and further available
information (Chapters 4 and 5). The models are restricted to RTIs and PIs (excluding
next generation drugs within these classes), simply due to lack of data on novel drugs in
databases collecting clinical response data. This poses no major limitation, as RTIs and
PIs remain the major building block for today’s antiretroviral therapy of HIV infections.
Novel drugs are typically spared for later treatment lines often termed salvage treatments.
Finally, we undertake first steps towards therapy sequencing by introducing a fast method
for estimating the viral evolution during combination therapy (Chapter 6).
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3 Extensions to GENO2PHENO

The web service geno2pheno for predicting phenotypic drug resistance from the viral
genotype has been in operation since December 2000. Updates and continuous research is
required for maintaining its benefit for virologists and clinicians treating HIV patients. In
this chapter we describe the web tool geno2pheno[integrase] that predicts from the viral
genotype phenotypic resistance against two integrase inhibitors (Section 3.1). Moreover,
we present research aiming at improving the usefulness of predicted fold-change in IC50

by deriving clinically relevant cutoffs of the continuous measure (Section 3.2). Finally,
in Section 3.3 we explore approaches for improving prediction of resistance to individual
antiretroviral drugs by using abundantly available viral genotype data in addition to the
genotype-phenotype pairs.

3.1 GENO2PHENO[integrase]

The viral integrase comprises 288 amino acids and is a product of the C-terminal portion
of the large precursor protein encoded by the Pol gene. Only recently, in 2008, the first
integrase inhibitor raltegravir (RAL) was approved by the FDA. Knowledge of drug resis-
tance against RAL and elvitegravir (EVG), an integrase inhibitor in phase III clinical trials,
accumulates only slowly. Moreover, due the recent release of the drug, routine resistance
testing is not established yet, mainly owing to the fact that the integrase of the patient’s
virus is assumed to be wild type and thus susceptible to the novel drug. As a consequence,
genotype-phenotype data is rare. However, some researchers investigate mutations, which
were reported to emerge during integrase inhibitor containing regimens, with phenotypic
resistance assays. These genotype-phenotype data are partially available via Stanford’s
HIVdb1.

Material and Methods

Using this freely available resource we compiled a dataset comprising 113 and 126 genotype-
phenotype pairs for RAL and EVG, respectively. The raw data were preprocessed exactly
like in the case of geno2pheno: the decadic logarithm was applied to the fold-change
values, and each of the 288 amino acid positions was represented by 20 binary variables
indicating the presence (or absence) of a specific amino acid at that position. In accordance
to the geno2pheno web service we applied linear support vector regression (SVR) for
computing the continuous log10(FC) from genotype. The cost parameter C of the SVR
was optimized in a five-fold cross-validation. Performance was measured using Pearson’s
correlation coefficient (r) between predicted and measured log10(FC) in a leave-one-out
cross-validation (LOOCV) with the optimized cost parameter. In addition, we trained one

1http://hivdb.stanford.edu/cgi-bin/IN_Phenotype.cgi
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linear SVR model for each drug on the complete set for investigating the contribution of
each mutation to the overall observed resistance. More precisely, linear support vector
machines (SVMs) allow to rewrite the decision function for classification and regression
as a simple linear model with trivial access to the contribution of every mutation (Guyon
et al., 2002). The training of a SVM results in a set of support vectors ~xk with label yk
and a set of non-zero weights ak. In case of a classification task, the label for a new sample
~x is then computed by:

f(~x) = sgn

(∑
k

ykαkK( ~xk, ~x)

)
, (3.1)

where K( ~xk, ~x) is the kernel function. Essentially, a kernel function expresses the similarity
between two vectors. Hence, during the decision process the similarity of the input vector
to each support vector ~xk is computed and multiplied with its label yk and its influence αk
derived during training. Popular kernel functions are for instance, the polynomial kernel
with degree d, K( ~xk, ~x) = (1 + 〈 ~xk, ~x〉)d and the radial basis function kernel K( ~xk, ~x) =
exp(−β‖~x− ~xk‖2/(2σ2)). However, when using a plain linear kernel we simply set

K( ~xk, ~x) = 〈 ~xk, ~x〉,

which allows us to rewrite the decision function as

f(~x) = sgn (~w · ~x+ b) , with

~w =
∑
k

αkyk ~xk and b = 〈yk − ~w · ~xk〉.

Thus, the weight vector ~w is simply a linear combination of the support vectors and offers
a straightforward interpretation.

Results

Figure 3.1 depicts the scatter plots between predicted and observed log10(FC) values. For
both drugs the correlation coefficients are high, whereas resistance to RAL (r = 0.87) was
predicted more accurately than resistance to EVG (r = 0.79).
The influence of each mutation on the measured phenotypic resistance against RAL and

EVG is displayed in Figures 3.2 a) and b), respectively. As expected, most mutations
lead to an increase in FC; a few mutations, however, slightly increase susceptibility to the
drugs. Figure 3.2 c) shows a scatter plot between the SVR weights obtained from the
RAL and EVG models. Here it becomes evident that most mutations confer resistance
to both drugs. A few exceptions are mutations at position 66, which influence the EVG
phenotype but not the RAL phenotype, and mutation 151I that increases RAL resistance,
but decreases EVG resistance. The offset (i.e. b in the linear model) is close to 0 for both
models, thus indicating no resistance for wild type viruses.

Discussion

A clear limitation of this study is the low number of training instances, which, in addi-
tion, originate from a total of eleven different research groups using different experimental
assays for measuring phenotypic resistance. These factors clearly increased the variation
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(b) EVG

Figure 3.1: Scatter plots between predicted and observed log10(FC) values for (a) RAL
(n=113) and (b) EVG (n=126).

in the phenotypic measurements we used for training the SVR models. Despite this short-
coming, the achieved prediction accuracy was surprisingly good for both drugs. This,
however, might be a direct consequence of the origin of the data: researchers were in-
terested in the effect of a few mutations, which frequently emerge during treatment with
integrase inhibitors. Thus, they conducted site-directed mutagenesis to introduce these
mutations, individually or in combination, into a wild type virus. Hence, our model sum-
marizes the knowledge derived from these experiments, but it does not allow to identify,
yet un-described integrase resistance mutations as it was done with the training data for
geno2pheno (Sing et al., 2005b). Furthermore, as a consequence of the bias towards well-
known resistance mutations, some training instances had identical genotypes. Of course,
identical samples can artificially boost the performance assessed in cross-validation set-
tings. In order to study the impact of duplicate samples on the prediction accuracy, we
repeated the LOOCV study with a smaller set of unique samples (n=76 for RAL and
n=90 for EVG). The observed correlation was slightly worse for RAL (r = 0.85) and even
slightly better for EVG (r = 0.81) than with the full dataset. Nonetheless, analysis of
the feature importance could confirm the high cross-resistance potential between the two
inhibitors (McColl et al., 2007).

The prediction of phenotypic resistance to the integrase inhibitors RAL and EVG based
on SVR models is implemented in the freely available web service geno2pheno[integrase]

2.
Along with the predicted FC values, a list of mutations contributing to the drug resistance
is provided. Currently, prediction of resistance to INIs is decoupled from prediction to
resistance to RTIs and PIs, since, as of now, determining the genotype of the viral integrase
and the Pol fragment containing protease and reverse transcriptase are separate working
steps.

2http://integrase.geno2pheno.org

http://integrase.geno2pheno.org
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Figure 3.2: Contribution of each mutation to the predicted phenotypic resistance to RAL
(a) and EVG (b). All mutations that cause a change in log10(FC) of more than
0.15 are labeled with the corresponding substitution in red (increase) or green
(decrease). Correlation of mutations (c): the x-axis (y-axis) displays the effect
on log10(FC) by a specific mutation on RAL (EVG) resistance.
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3.2 Estimating Clinically Relevant Cutoffs for GENO2PHENO

The appealing benefit of the phenotypic drug resistance test, and consequently also of the
predicted FC in drug resistance, is the output of a scalar value that objectively quantifies
drug resistance. These values, however, have to be interpreted in terms of clinical impact.
Intuitively, high values predict unfavorable outcome, while low values indicate good re-
sponse to the drug. Still, where exactly the cutoffs are located, which classify a drug as
susceptible, intermediate, and resistant, is unclear. The computation of clinically relevant
cutoffs is therefore an essential task for converting an in vitro measure into a clinically use-
ful tool. Moreover, the observed ranges of FC vary heavily between drugs. For example,
FC for ZDV in the training data for geno2pheno has a median of 29 [interquartile range
(IQR): 1.5; 225], while ABC has a median of only 3.9 [IQR: 1.7; 8.2]. In geno2pheno this
scaling issue is addressed by normalizing the raw predicted FC with the predicted FC as
observed in treatment-naïve patients (Beerenwinkel et al., 2003a). Briefly, the log10(FC)
of one drug in a group of untreated patients, i.e. patients, who are assumed not to have re-
sistance mutations, is predicted with geno2pheno and the mean µnaïve and the standard
deviation σnaïve are computed. The log10(FC) for a new prediction is now normalized by
computing the z-score

z =
log10(FC)− µnaïve

σnaïve
.

Hence, drug resistance is expressed as the distance (measured in standard deviations)
from a treatment inexperienced group, and therefore makes FCs for different drugs more
comparable. The problem, however, which values correspond to intermediate or complete
drug resistance remains unsolved by this transformation.
The first generation of cutoffs in geno2pheno was based on the observation that on a

logarithmic scale the distribution of the FC values displays a bimodal distribution (Fig-
ure 3.3) – more precisely, a mixture of two Gaussian distributions, with one Gaussian rep-
resenting the susceptible subpopulation and the other the resistant subpopulation. Hence,
the density of the x = log10(FC) can be modeled as

α · φ(x;µ1, σ1) + (1− α) · φ(x;µ2, σ2),

with φ(x;µ, σ) denoting a normal distribution with mean µ and standard deviation σ

(Beerenwinkel et al., 2003a). The model parameters can be efficiently estimated using the
expectation-maximization (EM) algorithm (Dempster et al., 1977), and the intersection
(between µ1 and µ2) of the two (weighted) Gaussians represents a logical candidate for a
cutoff between susceptible and resistant. Beerenwinkel et al. (2003a) exploited the bimodal
nature of the distribution further for calculating the probability of an FC value of belonging
to the susceptible subpopulation, that is where prob(sus|FC) > prob(res|FC) (Beerenwinkel
et al., 2003b). To this end, the zero x0 of the log-likelihood function l(x) = prob(sus|x)

prob(res|x)
is computed and the log-likelihood function is approximated by its tangent L(x) at x0.
Finally, the probability of an FC value to belong to the susceptible subpopulation can be
approximated with prob(sus|FC) ≈ 1

1+exp(−L(x)) , where x := log10(FC). This quantity is
also referred to as the activity of a drug d against a virus.

Despite its appealing mathematical properties, the probability of belonging to the sus-
ceptible subgroup was not favored by the clinicians and virologists, who considered the



36 3 Extensions to geno2pheno

−1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

NFV

log10(FC)

D
en

si
ty

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9
1

D
en

si
ty

P
ro

ba
bi

lit
y

−2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

EFV

log10(FC)

D
en

si
ty

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9
1

D
en

si
ty

P
ro

ba
bi

lit
y

Figure 3.3: Distribution of log10(FC) for the PI NFV and the NNRTI EFV. The Gaussian
representing the susceptible (resistant) subpopulation is depicted by a green
(red) dashed line. The intersection of the Gaussians is denoted by the vertical
dashed line, and the approximation of prob(sus|FC) is given by the blue line.

measure being too conservative. That is, viruses are being declared resistant against a
compound although the drug still shows some clinically useful activity in the patient. The
current set of cutoffs used in geno2pheno are so-called clinically relevant cutoffs, mean-
ing, they reflect the clinical usefulness of predicted in vitro resistance. For estimating
those cutoff values special treatment changes were manually examined. In these treatment
changes only a single drug was added to the regimen and the achieved change in viral load
can therefore be fully attributed to this new drug in the combination. Hence, clinically
relevant cutoffs can be computed by correlating the predicted drug resistance against the
compound to its effect on viral load decline (Däumer et al., 2007). These special treatment
changes, however, occur only rarely in databases collecting routine treatment informa-
tion, and consequently, the estimated cutoffs are unreliable. As a result, the approach
was restricted to the drug LPV for which most data was available. A further method for
deriving clinically relevant cutoffs (employed for the remaining drugs) was based on the
correlation of predicted drug resistance to a drug with the viral load measured during a
failing treatment containing that drug. In short, a linear model between log10(FC) and
log10(VL) was fitted and the FC corresponding to a VL of 103.41 copies per ml (i.e. two
standard deviations from the mean of VL in treatment-naïve patients) was selected to be
the upper cutoff (Däumer et al., 2007). The lower cutoff could not be estimated with this
method and was set to the biological cutoff (i.e. two standard deviations from the mean
IC50 observed in treatment-naïve patients).
The company Virco with its proprietary FC prediction system VircoTYPE was facing a

similar problem. For deriving clinically relevant cutoffs Winters et al. (2008) compiled one
dataset per drug comprising only regimens containing that drug. Briefly, the treatments
are grouped with respect to the estimated background activity of the other drugs (using
a preliminary cutoff), thus allowing for studying the relation between change in viral load
and predicted FC of the target drug. The lower and upper cutoffs are defined as the FC
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values at which the drug exhibits a 20% and 80% loss in activity compared to a wild type
virus, respectively. The thresholds are optimized iteratively per drug, that is, after values
for all drugs have been computed sequentially, the next round of cutoff optimization uses
the improved values to achieve a better estimate of the background activity. The iterative
procedure was stopped when the computed clinical cutoffs remained stable. Moreover,
stability of the derived cutoffs was estimated using 1000 bootstrap replicates of the initial
data (Winters et al., 2008).
For allowing a more systematic derivation of clinical relevant cutoffs for the geno2pheno

system we investigated an approach akin to the one applied by Virco. In contrast to that
approach, all cutoffs are estimated simultaneously using global probabilistic optimization
algorithms like simulated annealing (Kirkpatrick et al., 1983) and genetic algorithms. In
the following, we briefly describe our approach.

Material and Methods

Data

The basis for the optimization is a set of treatment change episodes (TCEs) extracted
from the EuResist integrated database. Briefly, a TCE comprises the viral genotype
(at most three months prior to treatment start), the prescribed drug combination, and a
viral load before (at most three months) and after treatment start (within 4-12 weeks).
Treatment success was defined as a reduction of the VL below 500 copies per ml blood or
by at least a 100-fold reduction compared to the pre-treatment VL measurement. Details
on this standard datum definition and the EuResist database are provided in Chapter 5.
Application of the definition to data stored in the current version of the EuResist database
resulted in 5,012 TCEs. Of those, 4,514 instances were randomly selected and formed the
development set. The remaining 498 TCEs were used as an independent test set. Success
rate was 72.5% in both datasets. Furthermore, FC in drug resistance against the drugs
applied in a treatment was predicted with geno2pheno.

Global Probabilistic Optimization

Simulated annealing (SA) and a genetic algorithm (GA) were used to compute two cutoffs
for every compound. Below (above) the lower (upper) cutoff activity of the drug was rated
1.0 (0.0), representing full (no) activity. Between the cutoffs the activity was set to 0.5.
SA starts with a random set of cutoffs, and a subset of those are randomly modified in

each iteration of the algorithm. The cutoffs are used to compute the phenotypic suscepti-
bility score (PSS) of the applied regimen, i.e. simply the sum of individual drug activities.
If a modified set of cutoffs improves the correlation between the PSS and the change in VL
(∆VL) on the development set, then it is retained. If, on the other hand, the modified set
lowers the correlation, then it is only retained with a small probability. This probability
depends on the magnitude of decrease of the correlation and on the runtime of the algo-
rithm. Acceptance of slightly worse solutions is a tool for avoiding to get stuck in local
maxima. Precisely, the probability paccept of accepting a worse set of cutoffs is

paccept = exp
(

δ

T (i)

)
, with T (i) =

1
50

(
1− i

I

)
,
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where δ is the difference in performance between the old set and the new set (i.e. negative),
T (i) is the temperature of the system, I is the maximal number of iterations (here 5000)
and i is the current iteration. Based on the current best set of cutoffs, a neighboring set
of cutoffs was tested. In order to reduce computational complexity, the continuous IC50

values were searched in steps of 0.05. A neighboring set of cutoffs is defined as a set in
which no cutoff differs by more than 0.15 (i.e. three grid steps) from the corresponding
value in the current best set. Finally, it was ensured that lower cutoffs were smaller than
upper cutoffs. Among all neighboring sets of cutoffs, one set was randomly selected for
being tested in the next iteration.
In contrast to SA, GA maintains multiple sets of cutoffs (the population) with each

set containing cutoffs for all drugs (one individual). In every iteration of the algorithm
(generation), the chance to copy a set of cutoffs depends on its performance (fitness).
During the copying process the cutoffs are randomly modified (mutated) and even parts of
individuals might be exchanged (cross-over). The algorithm terminates when a stopping
criterion is fulfilled. Usually, the stopping criterion comprises a maximum number of
generations and a maximum number of generations without substantial improvement (stall
generation). For GA we used the implementation of the genetic algorithm and directed
search toolbox of the programming environment Matlab.
For robust estimates of the cutoffs, SA and GA were carried out on 100 bootstrap

replicates of the original development set and the mean of the cutoffs obtained from the
bootstrap replicates represents the final set of cutoffs. This set was used to compute PSS
values on the validation set where the PSS was correlated to ∆VL and to the binary out-
come – performance was measured as Pearson correlation (r) and area under the receiver
operating characteristics (ROC) curve (AUC). Briefly, ROC curves depict classifier per-
formance by giving a true-positive rate (TPR; percentage of correctly predicted successes)
for every false-positive rate (FPR; percentage of failing therapies that were predicted to
be successful). The AUC summarizes the performance and is a convenient measure for
comparing scoring systems without the need to provide a particular cutoff (Brun-Vézinet
et al., 2004). The AUC is a value between 0 and 1 corresponding to the probability that a
randomly selected success receives a higher score than a randomly selected failure (Fawcett,
2006). The achieved performance was compared to the old cutoffs, to the original activity
scores, and to Stanford’s HIVdb.
In addition to the original approach, we investigated slight modifications. Namely, the

use of AUC instead of correlation as the target function, a linear interpolation of the
intermediate region (instead of simply using 0.5), and the combination of both.

Results

Figure 3.4 a) depicts the cutoffs based on the activity score, the old manually derived
clinical cutoffs, and the set of new automatically derived clinical cutoffs. This new set of
cutoffs was derived with GA and correlation between PSS and ∆VL as a target function
without interpolation between the cutoffs. Of note, cutoffs based on the bimodal activity
model tend to be lower for most drugs than the (old or new) clinical cutoffs, and thereby
confirm the subjective impression of virologists and clinicians. When used with linear
interpolation between the lower and upper threshold, the new cutoffs achieve an AUC
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(a) clinical cutoffs (b) ROC curve

Figure 3.4: New and old clinical cutoffs (CCO) in comparison (a). Cutoffs based on the
bimodal activity model are shown in the upper bar. The old clinical cutoffs
are depicted in the middle bar, and the newly derived cutoffs are depicted
below. Green corresponds to susceptible, yellow and red indicate intermediate
and full resistance, respectively. Performance of different sets of cutoffs (b).
Performance achieved with the different sets of cutoffs on the validation data
in comparison to a HIVdb 5.0.0 based prediction.

(r) of 0.784 (0.469), compared to 0.759 (0.433) with the old cutoffs, 0.776 (0.461) with
the activity score, and 0.781 (0.457) with HIVdb using the five state interpretation. GA
provided an improved set of clinical cutoffs for geno2pheno that performed slightly better
than (as good as) HIVdb with respect to correlation (AUC). Figure 3.4 b) depicts the
ROC curves on the validation set computed with the old and new clinical cutoffs and
the reference methods HIVdb and activity scores. Based on a method by DeLong et al.
(1988) the significance of the difference between two AUC values could be assessed. Only
improvements over the old clinical cutoffs by any other method showed a statistical trend
(new clinical cutoffs: p = 0.0877; activity score: p = 0.1097) or even statistical significance
(HIVdb: p = 0.0204). The p-values for differences between the remaining pairs of methods
were all larger than 0.19.

Table 3.1 lists the achieved performance on the validation set using either 0.5 for the
intermediate resistance or the linear interpolation. Of note, for simulated annealing it
beneficial, in general, to use interpolation during the estimation of the cutoffs, in addition,
using the correlation between PSS and ∆VL as target function optimized both r and
AUC while AUC as target function results in worse r on the validation set. For GA such
conclusions cannot be drawn. Here, using AUC instead of correlation as optimization
function achieved slightly better performance in terms of AUC. The upper thresholds for
some drugs, however, were extremely large, e.g. ZDV and 3TC received approximately an
upper cutoff of 100-fold (data not shown). That is, for these drugs, viruses were regarded
as resistant only for FC values of 100 and more. Overall, cutoffs derived with GA yielded
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validation
simulated annealing genetic algorithm
r AUC r AUC

D I D I D I D I
de

ve
lo
pm

en
t

r

D 0.455 0.464 0.763 0.774 0.472 0.469 0.780 0.784
I 0.465 0.467 0.759 0.766 0.468 0.471 0.774 0.784

A
U
C D 0.421 0.396 0.759 0.756 0.467 0.463 0.786 0.789

I 0.446 0.436 0.752 0.751 0.479 0.466 0.784 0.790

Table 3.1: Performance of different sets of automatically derived clinical cutoffs. Perfor-
mance was measured in correlation (r) and AUC on the independent validation
set. The rows denote the setting in the training stage, i.e. the different tar-
get functions and whether interpolations between thresholds was used (I for
interpolation, D for discrete). The columns correspond to different settings in
the validation setting. The first (last) 4 columns denote performance of cutoffs
derived with simulated annealing (genetic algorithm).

better performance on the independent validation set than the cutoffs derived with SA
when the same training setup was used. The method of DeLong et al. (1988) indicates
that the observed improvements in AUC are significant (p-values range from 0.0502 to
0.0041).
Clearly, SA and GA are not the only probabilistic global optimization methods. Other

methods like ant colony optimization (Dorigo and Gambardella, 1997) can also be used to
simultaneously optimize the cutoffs. However, the genetic algorithm performs well, and it
is likely that modifications of the target function and the computation of the PSS play a
more pivotal role in the final quality of the cutoffs than the optimization method.

3.3 Improvements Using Semi-Supervised Learning

The advantage of data-driven methods for developing decision support systems, namely
that information is only derived from data without interference of expert opinions, is also
their major weak point: a sufficient amount of data is required during the training step
of the models. This weakness becomes more evident when new drugs are released. Rules-
based systems can easily be extended on the basis of first reports of the drug in clinical trials
or extended access programs. For the phenotypic resistance test, which is an important
step during data generation, the drug has to be available to the laboratory conducting the
assay. This, however, is usually only the case when the drug is already FDA approved.
Consequently, there exists a serious time lag between approval of a drug and the availability
of sufficient data for training statistical models.
In a recent work we investigated the use of semi-supervised learning (SSL) methods

for improving the prediction of drug resistance (Perner et al., 2009). Briefly, SSL uses
labeled data (genotype-phenotype pairs) and unlabeled data (just genotypes from routine
diagnostic) to derive improved models. The idea behind SSL is that unlabeled data can
provide information on the distribution of the data in the input space. This information
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can be exploited by the machine learning algorithm to avoid the separation of clusters, since
points in the same cluster are assumed to belong to the same class (cluster assumption).
Moreover, SSL methods generally assume that samples that are close in the input space are
also close in the output space (smoothness or manifold assumption). Zhu (2007) provides
an introduction into SSL and a survey on available SSL methods.
We examined two types of unlabeled data: the first category originates from patients that

were treated with the particular drug (for which we are building a model) at the time the
viral sequence was obtained (Sdrug), while the second category required only the use of one
drug of the same drug class (Sclass) at the time of genotyping. The second set of unlabeled
data can be expected to be larger but probably less informative for the learning as the
virus was (at the time of genotyping) not exposed to the drug in question. We found that
if all labeled data (up to 1,000 genotype-phenotype pairs) were used, then the SSL learning
methods showed little benefit over the standard supervised learning methods regardless of
the type of unlabeled data. If, however, only little labeled data were available (e.g. 10% of
all labeled data) then the SSL methods showed a significant improvement (Figure 3.6; upper
row). Unfortunately, the benefit could not be witnessed for all drugs/drug classes and all
tested SSL methods (data not shown). In fact, a violation of the SSL assumptions by the
underlying data, led to inferior models. For example, the performance of the 3TC model
was heavily corrupted by SSL methods. In the case of 3TC, one amino acid exchange
is sufficient to confer complete resistance, while for other NRTIs several mutations are
necessary. NRTIs are usually given to the patients in pairs. Thus viruses that were exposed
to 3TC were also exposed to other NRTIs with more complicated resistance patterns. As
a consequence, the data density does not reflect the labeling of 3TC resistance, which is a
clear violation of the smoothness assumption.
The transductive SVM (tSVM) is a SSL version of the SVM and, just like its supervised

counterpart, provides a decision boundary (see Eqn. 3.1) after the training phase. Briefly,
the standard soft margin SVM optimizes the following function:

min
~w

1
2
‖~w‖+ C

N∑
i=1

ξi, subject to ξi ≥ 0, yi(~w · ~xi + b) ≥ 1− ξi,∀i (3.2)

where N is the number of labeled training instances, ~xi and yi are the features and the label
of the ith instance, respectively, ~w and b define the hyperplane, ξi are the slack variables
that allow for misclassification and C is the cost parameter for misclassified examples.
The tSVM aims at determining a separating hyperplane under consideration of the M
unlabeled samples {~x∗1, . . . , ~x∗M}, therefore Eqn. 3.2 is extended in the following way:

min
~w

1
2
‖~w‖+ C

N∑
i=1

ξi + C∗
M∑
j=1

ξ∗j , subject to

ξi, ξ
∗
j ≥ 0, yi(~w · ~xi + b) ≥ 1− ξi, y∗j (~w · ~x∗j + b) ≥ 1− ξ∗j ,∀i,j (3.3)

where the additional parameters ξ∗j and C∗ are the slack variables and the misclassification
cost parameter for the unlabeled instances, respectively. Thus, the optimization problem
in Eqn. 3.3 differs from Eqn. 3.2 in that the tSVM has to find a labeling y∗1, . . . , y∗m for the
unlabeled data and a hyperplane < ~w, b > simultaneously. An approximative optimization
procedure, which is required due to the complexity of the optimization problem, has been
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Figure 3.5: Decision boundaries fitted by SVM-based models. Decision boundary derived
only from labeled instances (colored circles) using a supervised SVM method
(left). The transductive SVM takes also the unlabeled samples (black circles)
into account when fitting the decision boundary (right).

implemented in the software library SVMlight by Joachims (1999). The approach begins
with a labeling of ~x∗1, . . . , ~x∗m based on the classification of an inductive SVM and a low
weight C∗ for the penalty for misclassified unlabeled data points. Then the labels of two
randomly selected samples (one positive and one negative) are swapped. If the objective
function is improved by that exchange of labels, then the switch is made permanent.
This process is repeated until there are no more switches possible that yield an improved
objective function. At this point the penalty for misclassified unlabeled data points C∗ is
increased and further labels are swapped to greedily improve the objective function. The
iterative procedure stops when C∗ exceeds a user defined value. Figure 3.5 depicts the
concept of transductive SVMs.

The resulting hyperplane (i.e. decision boundary) has the same form as the one derived
with the standard supervised SVM approach. Consequently, the boundary derived with
an tSVM can be used to assess the class of new unseen samples. The ability of classifying
unseen samples is not granted for SSL methods. In fact, many methods only provide a
classification for all unlabeled samples that are available during the training phase. Hence,
classification of a new sample requires retraining of the entire model with all previous
training data and the new unlabeled sample. For instance, low-density separation (Chapelle
and Zien, 2005), one of the SSL methods we studied, cannot be used on unseen samples.
This inability is a direct result from the fact that low-density separation (LDS) constructs
a kernel which is based on all samples (labeled and unlabeled) in training data. LDS is
only capable of making predictions for samples that were used to build the kernel.

Nevertheless, the benefit of using tSVMs in the transductive setting (i.e. only prediction
of unlabeled samples used in the training phase) that we previously observed (Perner et al.,
2009), could be transferred to the inductive setting (i.e. prediction of new unseen samples
without retraining). Figure 3.6 depicts the learning curves (size of labeled training data
versus model performance) for the two drugs LPV and ZDV using the tSVM implementa-
tion SVMlight by Joachims (1999) and both types of unlabeled data. A standard supervised
SVM served as reference method. The results show that with only very little labeled data
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(e.g. 2.5%) the SSL models almost reach the performance of the supervised method using
all available labeled data.
Concluding, SSL does not yet provide a useful tool for improving the prediction of

resistance for the first drug in a novel drug class (e.g. integrase inhibitors), simply due
to the fact that only little relevant unlabeled data exist at the time when the drug is
released. For instance, there are currently about 3800 integrase sequences stored in the
Los Alamos HIV Sequence Database (http://www.hiv.lanl.gov/), compared to about
75.000 sequences comprising the protease. Moreover, since prior to the release of raltegravir
there were no integrase inhibitors available, the majority of the available sequences will
not contain any resistance mutations. The question, whether SSL provides a benefit for a
new drug in an established drug class, depends on the resistance profile of the class and
how the drugs are used. For instance, the NNRTI and NRTI models suffered from the
circumstance that multiple drugs with different resistance patterns were simultaneously
targeting the same viral protein, while PIs generally benefited from SSL. Likewise, future
INIs might benefit from sequence data generated after exposure to raltegravir.

http://www.hiv.lanl.gov/
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Figure 3.6: Learning curve for the drugs LPV and ZDV. Model performance is given as
the area under the ROC curve (AUC) and based on a 10-fold cross-validation.
For LPV (ZDV) a total of 682 (1055) labeled samples (L) were available. For
the tSVM 1442 (2717) or 4435 (7887) sequences, which were exposed to LPV
(ZDV) or at least one PI (NRTI) at the time of sequencing, respectively, were
used. The performance was estimated using 2.5%, 5%, 10%, 20%, 40%, 60%,
80%, and 100% of the labeled data. The upper row depicts the performance
of tSVM and LDS in the transductive setting (i.e. test instances were used as
unlabeled training data). By contrast, the lower row depicts the performance
of tSVM in the inductive setting.



4 Predicting Response to Combination
Therapy

In Chapter 2 we introduced the basis of modern anti-HIV therapy. In order to ensure the
selection of potent regimens, several genotype interpretation systems are used to infer in
vitro drug susceptibility and/or in vivo response to antiretroviral treatment on the basis
of HIV-1 genotype. Most of these tools use a set of rules carefully crafted by experts
and classify the virus as susceptible, intermediate, or resistant to each of the individual
compounds. Few tools are fully data driven rather than based on expert knowledge. The
most prominent examples are geno2pheno (Beerenwinkel et al., 2003a) and VirtualPhe-
notype (Vermeiren et al., 2007), which both apply methods from statistical learning for
predicting in vitro resistance on the basis of genotype. Although all of these methods
are designed to infer susceptibility to individual compounds (Vercauteren and Vandamme,
2006), recently developed decision support tools are being explored to infer virological re-
sponse directly to a typical 3-4-drug HAART regimen. In one study (Larder et al., 2007),
artificial neural networks were used to predict the change in viral load, given the sequence,
regimen, and additional host-specific features. In Section 4.2 we introduce the software
pipeline geno2pheno-THEO, which predicts the probability of reaching an undetectable
viral load during the course of the regimen given the applied drug combination and the
genetic makeup of the viral population. Geno2pheno-THEO uses covariates that encode
the estimated viral evolution during treatment in addition to drug combination and viral
genotype. These evolutionary features are based on works by Beerenwinkel et al. and are
briefly summarized in Section 4.1. The resulting statistical model is evaluated on a large
external database in a comparison to well-established HIV genotype interpretation systems
(Section 4.3).

4.1 Features of Viral Evolution

The features estimating viral evolution that are used to improve the prediction of response
to antiretroviral treatment are based on works by Beerenwinkel et al. and are briefly
summarized in the following sections.

4.1.1 Activity Score

The activity score for combination treatments is based on the activity score for individual
drugs as computed by geno2pheno. Precisely, let D be the set of all drugs and T =
{d1, . . . , dn} ⊆ D be a combination of n drugs. Furthermore, Tc represents all drugs of T
belonging to drug class c ∈ {NRTI,NNRTI,PI}. The activity of a treatment T against

45
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virus seq is defined as:

activity(T, seq) =
∑
c

max
d∈Tc

activity(d, seq),

where rfd(seq) denotes the resistance factor (RF) of the virus seq against drug d, and
activity(d, seq) = prob(sus| log rfd(seq)) as defined in Section 3.2. Inhibitors sharing drug
target and mechanism of action are competing, e.g. for the binding site, thus the activity
score is restricted to the most active representative of a class (Jordan et al., 2002). No such
restrictions hold for drugs from different drug classes, and consequently the activity score
is additive for inhibitors from different drug classes. Obviously, the number of different
drug classes constitutes the upper bound of the activity for treatments. Thus, the activity
score is in [0,3] for our case with at most three drug classes.
Maximizing over drugs in the same class might at first glance seem limiting, since there

is no immediate benefit of administering multiple drugs from the same class. The benefit
becomes evident though, when considering the change of the activity score during the
course of treatment. The selective pressure posed by the treatment leads to mutations in
the viral genome, which in turn might affect drugs from the same class differently and thus
the most active drug from one class changes over time. For instance, at start of a regimen
comprising ZDV and 3TC the RT of a virus shows only the T215Y mutation, which solely
reduces the susceptibility of ZDV. Thus, the activity of 3TC is unharmed and consequently
the activity of the treatment is 1. During the time of therapy, the virus develops another
RT mutation. For instance, M184V that completely inhibits the activity of 3TC but does
not affect ZDV at all. The activity score for the combination treatment is now equal to the
activity of ZDV, in contrast to a 3TC monotherapy where the activity score would have
decreased immediately to 0.
This example illustrates that, in addition to the resistance to drugs at treatment start,

the long-term success of an antiviral therapy depends greatly on the ability of the virus to
escape from selective pressure presented by the treatment. An estimate of the virus’ ability
to escape from the treatment might therefore be an useful information for predicting the
success of combination treatments. Such an estimate can be derived by studying changes
of activity in the mutational neighborhood of the virus.
Due to the high dimension of the sequence space, i.e. there are 20319 possible amino acid

sequences of length 319, the neighborhood of the virus is explored using a beam search.
Precisely, starting from the original sequence, all variants with one additional mutation are
generated and the activity of the treatment against all variants is computed. The resulting
activity score for these in silico mutants is used to rank the variants. Only for the top b
mutants showing the least activity all variants with one additional mutation are generated
and their activity score is computed. The search stops when d mutations are introduced
into the original sequence. The breath b and depth d are the two parameters of the beam
search. The activity score at depth r is defined by:

activityr(T, seq) = min
seq′∈Br

activity(T, seq′),

where Br denotes the neighborhood of the original sequence with r additional mutations.
Br is generated from the b viruses with the lowest activity score in Br−1 by adding an
additional mutation.
For further details on an the activity score see the work by Beerenwinkel et al. (2003b).
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4.1.2 Mutagenetic Trees

The beam search approach assumes that every mutation is equally likely, and that only the
increase in resistance is important. This, however, is an oversimplification. For example,
there exist well-known resistance pathways for the first approved anti-HIV drug zidovudine.
The thymidine analog mutation (TAM) pathway 1 and 2 comprise the RT mutations 41L,
210W, and 215F/Y and 67N, 70R, and 219E/Q, respectively. The mutations belonging to
one pathway are mainly accumulated in a preferred order (hence pathway). The molecular
causes for the preferred order or for the existence of two distinct pathways are still unknown.
However, these pathways occur so frequently that they were identified by experts without
the use of computational analyses.
Beerenwinkel et al. (2005b) introduced mixtures of mutagenetic trees to estimate muta-

tional pathways from cross-sectional data. Briefly, a mutagenetic tree is a weighted directed
tree with vertices representing the appearance a new mutation (event). Edge weights are
conditional probabilities between vertices with the constraint that the parent event has
to be present before the child event can occur. Thus, every path from the root of the
tree to a vertex represents the ordered accumulation of mutations. Basically, mutagenetic
trees are restricted Bayesian networks and constitute an extension of the oncogenetic tree
model introduced by Desper et al. (1999) that was restricted to undirected trees. A further
extension of the original approach is the ability to generate mixtures of mutagenetic trees.
Formally, a mutagenetic tree is a quartuple T = (V,E, r, ρ), with V = {1, . . . , l} being a

set of vertices representing the events, E being the set of edges, r ∈ V being the root vertex
that encodes the absence of any events, and ρ : E → [0, 1] being the mapping from edges
to conditional probabilities. A single tree is constructed by first building the complete
digraph G = (V, V × V,w) on all vertices. The weights w are defined as

∀u, v ∈ V : w(u, v) = logPr(u, v)− log(Pr(u) + Pr(v))− logPr(v),

where Pr(u) and Pr(u, v) denote the marginal probability of event u and the joint prob-
ability of events u and v, respectively, as estimated from the data. The edge weights are
the logarithm of the independence of the mutations Pr(u,v)

Pr(u)Pr(v) multiplied by the direction

of the dependence Pr(u)
Pr(u)+Pr(v) . The mutagenetic tree is defined as the branching in G that

maximizes the sum of its edge weights. Using the algorithm by Edmonds (1967) the max-
imum weighted branching can be computed in O(|V ||E|) time, for a fully connected graph
this corresponds to O(|V |3). The weighting function w(u, v), however, displays an unde-
sired behavior for edges leaving the root node, since the less likely events receive a higher
score w(r, v) = − log(1 + Pr(v)). Thus, for edges leaving the root node the alternative
weighting function w(r, v) = logPr(v) is used.
The likelihood of a mutational pattern x is the probability that a given mutagenetic

tree T generates x: L(x|T ) = Pr(x|T ). Let S ⊆ V be the set of events defined by the
mutational pattern x. If there is a subset of edges E′ ⊆ E such that exactly all vertices of
S can be reached in the subtree (V,E′), then x can be generated by T with likelihood:

L(x|T ) =
∏
e∈E′

Pr(e)
∏

e∈{S×V \S}

(1− Pr(e)).

The first product computes the probability of reaching all events in S and the second
product represents the probability of not going beyond the events in S. If there is no
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appropriate subtree of T , then the pattern x cannot be generated by T . Hence, L(x|T ) = 0.
For instance, the right tree in Figure 4.1 does support the mutational pattern 215F, 41L
but not the pattern 215F, 41L, and 70R, since the mutations 67N and either 219E or 219Q
have to be acquired before the mutation at position 70. Thus, the likelihood of the pattern
215F, 41L, and 70R to be generated by that tree is 0. On the other hand, the likelihood
of the 215F, 41L is 0.4× 0.77× (1− 0.61)× (1− 0.45).
The mixture of mutagenetic trees is estimated from cross-sectional data in an EM-like

learning algorithm (Dempster et al., 1977). Formally, a k-mutagenetic tree mixture model
is defined as

M =
k∑
i=1

αiTi with αi ∈ [0, 1] ∧
k∑
i=1

αi = 1,

with Ti = (V,Ei, r, ρi). Consequently, the likelihood of a pattern x given the mixture
model is defined as

L(x|M) =
k∑
i=1

αiL(x|Ti).

In order to handle noisy real-world data, one component of the mixture is forced to attain
a star-like topology modeling the independence of mutations. Briefly, during the learning
phase we want to find the mixture of k mutagenetic trees that maximize the log-likelihood
of the training data:

N∑
n=1

log
k∑
i=1

αiL(xn|Ti). (4.1)

The responsibility γni of the tree Ti for the training sample xn is defined as the probability
of xn being generated by Ti given the mixture model M . In the M-like step of the training
algorithm the parameters of the current mixture model, i.e. the edge weights of the star
component, the k−1 trees, and the mixture parameters αi, are updated. In the E step the
responsibilities are computed using the updated model. E and M step are iterated until
the log-likelihood converges. At the initialization of the algorithm initial responsibilities
are assigned according to a (k − 1)-means clustering of the training data. Algorithm 1 is
adapted from (Beerenwinkel et al., 2005b) and summarizes the complete training process.
For each antiretroviral drug one mixture of mutagenetic trees is trained. The training

data for each drug comprises sequences from patients that were obtained during treatment
with that drug. Figure 4.1 depicts a 2-mutagenetic tree mixture model learned for the
drug ZDV. The left component is a star that supports every possible pattern and therefore
models the noise of the data. The right component is a tree estimated from data. The
mixture weights α are depicted above the components. The actual tree estimated from the
data is able to generate 72% of the instances found in the training data. The mixture of
mutagenetic trees can be used to derive two evolutionary features. The genetic progression
score provides an estimate on the expected waiting time for a mutational pattern to occur
and therefore summarizes how advanced the virus in terms of drug resistance is. The
genetic barrier to drug resistance is the probability that the virus will not escape from
drug pressure by developing further mutations. Both features are briefly described in the
next sections.
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Algorithm 1 k-mutagenetic tree learning (X = (xnj)1≤n≤N,1≤j≤l, k)
N is the number of training instances, and l is the number of events
1. Guess initial responsibilities:
(a) Run (k-1)-means clustering algorithm
(b) Set responsibilities

γni =

{
1
2 if xn is in cluster i− 1,

1
2(k−1) else.

2. M-like step. Update model parameters:
Ni =

∑N
n=1 γni ∀i ∈ {1, . . . , k}

T1 is a star with edge weights: β = 1
lN1

∑l
j=1

∑N
n=1 γn1xnj

∀i ∈ {2, . . . , k} :
(a) Estimate the joint probability for all pairs of events (u, v):

pi(u, v) =
1
Ni

N∑
n=1

γnixnuxnv.

(b) Compute the maximum weight branching Ti from the complete digraph with weights
w derived from pi.
(c) Compute the mixture parameter αi = Ni

N .
3. E step. Compute responsibilities:

γni =
αiL(xn|Ti)∑k

m=1 αiL(xn|Tm)
.

4. Iterate steps 2 and 3 until convergence, i.e. no changes in Eqn. 4.1.
return T1, . . . , Tk and α1, . . . , αk

The Genetic Progression Score

The genetic progression score (GPS) was introduced by Rahnenführer et al. (2005). Briefly,
a timed mutagenetic tree can be obtained by assuming independent Poisson processes
for the occurrence of events on the edges and for the sampling time of the virus. The
difference of occurrence time of the event j and its parents is denoted by Zj . Since event
j was generated by a Poisson process, the waiting time Zj is exponentially distributed
with parameter λj . Furthermore, let the sampling time of the virus ZS be exponentially
distributed with parameter λS . The probability of event j can be computed as Pr(j) =
λj/(λj + λS). Thus, the expected waiting time for event j is defined as:

E[Zj ] =
1
λj

=
1− Pr(j)
Pr(j)λS

=
1− Pr(j)
Pr(j)

E[ZS ].

Estimation of the λS from real data is usually impossible, since the time of infection is
usually unknown and the virus might have had events before starting the particular drug.
Thus, we set E[ZS ] = 1, which defines a unit-less waiting time. We emphasize that the GPS
is not intended to estimate absolute waiting times. Rather it provides a dimension-free



50 4 Predicting Response to Combination Therapy

Figure 4.1: Example Mutagenetic tree mixture.

measure of genetic progression that allows for comparing mutational patterns of different
viruses.
Unfortunately – apart from the case of a single event – there exists no formula for

computing the waiting time for arbitrary pattern of events. However, within the timed
mutagenetic tree model the expected waiting time can be estimated by simulating the
waiting process. To this end, the estimated probabilities Pr(j) are used to compute the
required λj = Pr(j)/(1−Pr(j)). For a sufficiently large number of simulations one receives
a stable estimate for the waiting time Zx for the mutational pattern x with respect to the
distribution induced by the mutagenetic mixture modelM . This waiting time is the genetic
progression score: GPS(x) = EM [Zx].
Of note, the GPS of a virus is computed for every drug (mutagenetic tree model) sepa-

rately. Due to the definition of E[ZS ] = 1 the waiting times cannot be compared between
drugs.

The Genetic Barrier to Drug Resistance

Instead of inspecting the past of the virus, i.e. to which state(s) in the (mixture of) tree(s)
the virus already has progressed, we can use the evolutionary model for studying the future
of the virus, i.e. to which states will it most likely move. Briefly, the genetic barrier is
defined as the probability of not escaping from a drug by developing further mutations.
With escape from a drug being defined as exceeding a predefined threshold of phenotypic
drug resistance.
In the mutagenetic tree model it is sufficient to describe the given viral sequence as

one of 2l possible mutational patterns. Given a tree topology one can now compute the
transition probability from the current pattern to any of the 2l possible patterns. If the tree
topology does not allow the transition – e.g. when loosing mutations, then the probability
is set to 0. Furthermore, using the paired genotype-phenotype data, which was used to
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train geno2pheno, one can compute the mean phenotypic resistance associated with each
mutational pattern. Due to the limited number of genotype-phenotype pairs it is likely that
some mutational patterns do not occur, in this case the weighted mean of all mutational
patterns with non-zero transition probabilities is used, with the transition probabilities
serving as weights. The genetic barrier to drug resistance is then simply defined as the
sum of all transition probabilities to mutational patterns with phenotypic resistance below
a certain threshold.

The genetic barrier to drug resistance combines evolutionary information, the transition
probabilities, with phenotypic information.

4.2 geno2pheno-THEO

This section describes a joint work with Niko Beerenwinkel, Tobias Sing, Igor Savenkov,
Martin Däumer, Rolf Kaiser, Soo-Yon Rhee, W Jeffrey Fessel, Robert W Shafer, and
Thomas Lengauer. The work was published in Antiviral Therapy under the title “Improved
prediction of response to antiretroviral combination therapy using the genetic barrier to
drug resistance” (Altmann et al., 2007a).

With about 24 drugs available and novel drugs being approved almost every year, it
becomes increasingly difficult for the treating physician to select an optimal drug combi-
nation. There are a variety of different therapeutic goals, including VL reduction, increase
in CD4+ T cell counts, minimization of adverse effects and preservation of future drug
options. Importantly, different optimization criteria will tend to favor different thera-
pies (Jiang et al., 2003). To date, most methods predict virological response to therapy
based on the baseline genotype and the compounds in the applied combination. Specifi-
cally, artificial neural networks (Wang et al., 2003) and fuzzy rules combined with a genetic
algorithm (Prosperi et al., 2004) were used in this manner to predict the change in VL.
Related approaches include the application of case-based reasoning (Prosperi et al., 2005)
and combinatorial optimization based on expert rules (Lathrop and Pazzani, 1999).

In this section, we report new ways of analyzing treatment change episodes (TCE) and
demonstrate how these new approaches might be more useful than current methods for
prediction of response to therapy. The improvement results from incorporating genetic
analysis, phenotypic prediction, and a prediction of the probability that further evolution
of resistance will occur. The applied methodologies involve various techniques of statistical
learning. We dichotomize virological response and compare the performance of several
classifiers that predict the therapeutic success or failure of each genotype-therapy pair.
The novel features derived from genotype and drug combination encode information about
the evolutionary potential of the virus and the predicted level of phenotypic drug resistance.
Specifically, we consider predicted phenotypes (see Section 2.5.2), the activity score based
on a heuristic search over in silico mutants (see Section 4.1.1), the genetic barrier and
the genetic progression score (see Section 4.1.2). Analyzing over 6,300 TCEs observed in a
clinical setting, we show that all new descriptors significantly improve prediction of therapy
outcome, especially if they combine evolutionary and phenotypic information.
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Figure 4.2: A treatment change episode (TCE) resulting in sequencing is always considered
to be a failure (a). If the virus is undetectable during the treatment following a
failure, then the TCE is called a success (b). In addition, the alternative defini-
tion for successful TCEs requires two subsequent viral load (VL) measurements
below the threshold with at least eight (or 16) weeks in between (c).

4.2.1 Material and Methods

Treatment change episodes

A TCE (Larder et al., 2003) consists of a baseline genotype, a drug combination, and
a binary outcome indicating success or failure of the regimen. For our analysis, valid
successful or failing TCEs were defined as follows (Figure 4.2): any available genotype
is considered as evidence of a failing regimen, because, in general, sequencing can only
be performed if the VL exceeds ∼1,000 copies/ml. Successful regimens are defined by
inspecting therapies that follow a genotype measurement. When multiple genotypes are
available, the most recent sequence sample before the onset of therapy was used. If the
VL decreases below 400 copies/ml at least once during the course of the follow-up therapy
and if genotyping was performed no earlier than three months before starting the therapy,
then the respective treatment is considered a success. This definition of success focuses on
initial response. Sustained response is also investigated by using an alternative definition
of success that requires a second follow-up VL value below the threshold at least 8 weeks
(or 16 weeks) after the first (Figure 4.2 c).



4.2 geno2pheno-THEO 53

Figure 4.3: The 6,337 analysed TCEs comprise a total of 875 distinct combination thera-
pies. The histogram summarizes all 354 drug combinations that occur at least
three times in the dataset. Another 116 combinations appeared only twice and
405 only once. Grey bars indicate successful therapies defined as initial viro-
logical responses below 400 copies/ml. The inlet histogram shows the 20 most
abundant drug combinations.

Datasets

We analysed data obtained from the Stanford HIV Drug Resistance Database (comprising
data from clinical studies ACTG 320, ACTG 364, GART and HAVANA) and from two
Northern California clinic populations undergoing genotypic resistance testing at Stanford
University. From a total of 25,717 therapies, 10,288 sequences, and 6,706 patients, we ex-
tracted 6,337 TCEs, including 4,776 failures and 1,561 successes, according to the definition
based on initial response. The median time period between treatment change and the first
follow-up VL measurement <400 copies/ml is 38 weeks (interquartile range: 16-78 weeks).
Figure 4.3 shows the distribution of drug combinations for this dataset (denoted A). The
alternative definitions resulted in 1,082 and 900 successes for eight and 16 weeks sustained
response, respectively. Because of lack of data on the drug enfuvirtide (at time of the study
the only approved EI), we considered only regimens consisting of NRTIs, NNRTIs and PIs.
From dataset A, we generated two special subsets that are balanced with respect to

sequences (BS) and with respect to therapies (BT), respectively. The dataset BS contains
one successful and one failing regimen for each of 1,364 sequences exactly. Each genotype in
this dataset gives rise to two TCEs, defined by the regimens before and after a successful
treatment change. Similarly, in the set BT each regimen is paired with two different
sequences, giving rise to exactly one successful TCE and one failure. This selection resulted
in a total of 2,436 TCEs comprising 321 different regimens. If, for a fixed drug combination,
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there were more sequences resulting in failure than in success, then failures have been
selected randomly to match the number of successes (or vice versa).
Dataset A was split into two groups denoted A1 and A2 according to the clinical centre

in which the TCE was observed. Group A1 comprises 816 successes and 2,098 failures from
one health care provider, and group A2 includes the remaining 745 successes and 2,678
failures from clinical studies and other hospitals. By using, in turn, one of these subsets for
training and the other for testing, we seek to identify possible biases that might be related
to the specifics of individual clinics, such as preferred treatment protocols. Datasets BS
and BT were split in the same manner.
In addition to the clinical data, we also used in vitro data on phenotypic drug resistance.

For each drug, 880 sequences with fold-change (FC) determined by a recombinant virus
assay (Walter et al., 1999) were available. These data were used to regress phenotype on
genotype and to identify resistant states in defining the genetic barrier.

Features

The baseline approach for predicting TCE outcome uses one indicator variable for each
resistance-associated mutation and one for each drug. For this approach and approaches
based on mutagenetic trees (Section 4.1.2), we considered the resistance mutations pre-
sented in Johnson et al. (2005) resulting in 66 binary variables (49 mutation indicators, 17
drug indicators). We refer to this encoding of genotypes and therapies as the indicator rep-
resentation. All other encodings contain these straightforward covariates and additional,
more elaborate, features.
The phenotype representation includes, for each drug in the respective regimen, the

predicted FC in susceptibility. These predictions are based on a linear support vector
machine that has been trained on the 880 matched genotype-phenotype pairs as described
previously (Section 2.5.2).
In the activity representation, the indicator vector is extended by the estimated activity

of the drug cocktail against the virus population. For the beam search both parameters,
both the breath and depth are set to 10.
The genetic barrier representation also adds both phenotypic and evolutionary informa-

tion to the indicator representation, and it can be regarded as an advancement over the
activity score. More precisely, we used mutagenetic trees, a family of probabilistic graphi-
cal models, to estimate the order and rate of occurrence of resistance mutations. Using the
Mtreemix software1 (Beerenwinkel et al., 2005c), for each drug, a mixture model of mutage-
netic trees was learned from sequences derived under regimens comprising that drug. The
number of trees was selected using the Bayesian information criterion (BIC) (Yin et al.,
2006). A validation of mutagenetic tree models in terms of tree stability and goodness of
fit has been presented in Beerenwinkel et al. (2005b). Viral escape is approximated by ex-
ceeding a predefined level of phenotypic resistance. These levels are defined by the cutoffs
listed in Table 4.1 and are exactly the (old) clinical cutoffs for geno2pheno (Section 3.2).
Unlike the sequence space search for low-activity mutants, the genetic barrier accounts
for the fact that not all mutations are equally likely to occur. This is also an advantage
over simple counting of resistance mutations, a frequently employed approximation to the

1http://mtreemix.bioinf.mpi-sb.mpg.de/

http://mtreemix.bioinf.mpi-sb.mpg.de/
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drug ZDV ddC ddI d4T 3TC ABC TDF NVP DLV EFV
cutoff 30.0 2.2 2.4 2.0 15.4 3.4 2.1 9.0 9.7 7.0
trees 5 2 4 4 5 7 3 5 2 4

drug SQV IDV RTV NFV APV LPV ATV
cutoff 4.5 4.6 2.6 5.8 12.0 10.0 4.2
trees 4 4 4 6 3 5 2

Table 4.1: Resistance cutoff used for each drug and number of trees in the mutagenetic
tree mixture model.

genetic barrier.
Finally, the genetic progression score (GPS) involves only evolutionary information that

is extracted from the mutagenetic tree models. The GPS of a genotype is defined as the
expected waiting time for the mutational pattern to occur. Thus, the GPS also accounts
for different probabilities of different mutations, but it does not include any phenotypic
information.

Statistical Learning Methods

The five feature sets defined the input to several different machine-learning techniques,
which were used to predict treatment response. We selected several standard classification
methods (Hastie et al., 2001, pp.79-114), including linear discriminant analysis (LDA),
which was used in Beerenwinkel et al. (2003b), together with the activity representation,
least-squares regression, linear support vector machines (SVMs), decision trees (C4.5 soft-
ware2), and logistic regression. We also included the more recent method of logistic model
trees (LMT), which combine decision trees with logistic regression in the leaves of the
tree (Landwehr et al., 2005).

Receiver Operating Characteristic Analysis

We used receiver operating characteristic (ROC) curves to compare the predictive power
of classifiers. ROC curves arise from varying a parameter of the classifier that controls
the trade-off between sensitivity and specificity. Each point on the ROC curve represents
one classifier, and the curve allows for reading off its false positive and true positive rate.
For example, the point (0.1, 0.8) represents a classifier that will falsely predict 10% of
failing regimens as “success”, but correctly detect 80% of the successful regimens. The
comparison of ROC curves is preferred to comparing error rates, because it corrects for
skewed class distributions (as in dataset A) and controls both sensitivity and specificity of
the classifier (Brun-Vézinet et al., 2004). The area under the ROC curve (AUC) is used
as a summary performance measure. The trivial classifier that makes random predictions
produces a linear ROC curve with an AUC of 0.5. The maximum AUC a classifier can
achieve is 1.0 and the larger this value, the better its prediction performance. AUC values
were compared using Wilcoxon rank-sum tests. The ROCR software3 was used for ROC
analysis (Sing et al., 2005a).

2http://www.rulequest.com
3http://bioinf.mpi-sb.mpg.de/projects/rocr/

http://www.rulequest.com
http://bioinf.mpi-sb.mpg.de/projects/rocr/
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4.2.2 Results

Table 4.2 shows the performance of all learning techniques in combination with all feature
encodings for the complete dataset A using the initial response definition of therapeutic
success. Classifier performance was estimated by 10-fold cross-validation and is reported as
the AUC. All of the proposed extensions of the indicator representation improved predic-
tive power (Table 4.2, last column). This improvement was observed across all statistical
learning methods. The additional features activity score and GPS yield the same predic-
tive power on average. The largest improvement is achieved by the genetic barrier and by
phenotype predictions, which both use phenotypic information for prediction. Compared
with the feature encoding, the choice of the learning method has only a small effect. On
average, the AUC differs by as much as 0.064 (7.7%) between different feature encodings,
but only by 0.027 (3.2%) between different learning methods. The AUC of the phenotype
representation decreases if combined with decision trees. However, as illustrated in Fig-
ure 4.4, the ROC curves reveal that this difference is mainly due to lower true positive
rates at very high false positive rates, which might not be relevant for practical purposes.
We restrict the further analysis of ROC curves to the LMT learning method, which, on
average, outperformed all other techniques (Table 4.2).

In Figure 4.2, the ROC curves for the five different feature encodings used with LMT on
dataset A are shown. The indicator representation (black line) is improved significantly
by all four additional features (p<0.0002). This advancement is most prominent for the
genetic barrier that incorporates phenotypic information indirectly (p=0.0002), followed
by the predicted phenotype, the activity score and the GPS. If we accept a false positive
rate of 10%, then the indicator representation will detect 65% of the successful TCEs
correctly (represented by the point [0.1, 0.65] on the black line in Figure 4.2), whereas the
genetic barrier representation achieves an accuracy of 76.6%. The accuracy can be further
increased by accepting more false positives. For example, if 90% of the successes were to
be detected, we would have to accept 19.5% false positives for the genetic barrier or the
phenotype encoding, and 35.5% for the indicator representation. The differences between
the four encodings are even more strongly articulated in the analysis of the two balanced
subsets of the complete dataset.

In the dataset BS, each viral genotype is paired with a drug combination that gave rise
to a successful TCE and with another TCE that resulted in failure. Thus, the genotype
alone does not provide any information on the outcome of these TCEs. As might have
been expected, the GPS does not improve the predictive power on this dataset, because
this feature is derived only from the genotype (Figure 4.5 a). By contrast, the remaining
three encodings, namely activity, genetic barrier, and phenotype, enhance the performance
significantly (p<0.004). The genetic barrier encoding outperforms the activity encoding,
and the phenotype representation provides the best encoding on this dataset. However,
the difference between genetic barrier and phenotype is negligible (p>0.9).

In the dataset BT, the therapies (rather than the sequence, as in BS) are balanced. For
every therapy there exists the same number of genotypes that gave rise to successful and to
failing TCEs. Here, the drug combination alone does not provide any information on the
outcome of the TCEs. Usage of the GPS on this dataset increases the performance of the
indicator representation to the level reached with the activity representation (Figure 4.5 b).
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Figure 4.4: ROC curves for the complete dataset A using LMT (unless stated otherwise
in the legend) and 10-fold cross-validation. Every feature encoding is repre-
sented by a receiver operating characteristic (ROC) curve, namely the baseline
indicator representation (indicator), and the following additional features: pre-
dicted phenotypes, activity score, genetic barrier, and genetic progression score
(GPS). Each point on the curve represents a classifier and allows determining
its true positive rate and false positive rate. For example, the point (0.355, 0.9)
on the black line represents a logistic model trees (LMT) classification model
trained on the plain indicator representation with an expected 35.5% of false
positives and 90% of true positives.
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(a) Dataset BS
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(b) Dataset BT

Figure 4.5: ROC curves for dataset BS (a) and dataset BT (b) using LMT and 10-fold cross-
validation. BS referes to “balanced with respect to sequences” and likewise BT
refers to “balanced with respect to therapies”. Fur further details see caption
of Figure 4.4.

Similarly to dataset BS, application of the phenotypic and the genetic barrier representa-
tion results in maximal performance. Here, the genetic barrier encoding outperforms the
phenotype encoding, but the difference does not reach statistical significance (p=0.1655).
In the interesting region of low false positive rates (<30%), however, the difference can be
substantial. For example, at a false positive rate of 10% the indicator approach recognizes
28% of the successful TCEs correctly, GPS yields a true positive rate of 54.7%, using the
activity score increases true positives to 54.5%, the phenotype representation achieves al-
most 58%, and the genetic barrier recognizes as many as 64.9% of successes correctly. This
rate more than doubles the precision of the indicator encoding alone.

In order to investigate possible biases in the estimated models resulting from the specific
clinical centres which collected the TCE data, we used the split of dataset A into A1
and A2. The TCEs in A1 originate from a single health care provider, but those in A2
stem from several different clinical studies and hospitals and hence are expected to be less
homogeneous. When A1 and A2 are used separately in the same cross-validation procedure
described above for the pooled dataset A, then the predictive performance is similar in both
cases (AUC of 0.898 for A1 and 0.906 for A2). If A1 (A2) is used for training and A2 (A1)
for testing, we estimate an AUC of 0.837 (0.875). The performance loss due to separation
of the data by clinics was slightly more pronounced for the balanced dataset BS than for
BT (data not shown).

All of the reported results remain qualitatively unchanged when therapeutic success is
defined by a more sustained response over at least eight or 16 weeks instead of by initial
response. Using the alternative definitions we re-calculated the AUC values for all feature
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encodings with LMT on all datasets. None of the derived performance measures showed
any significant difference compared with the initial definition.

4.2.3 Discussion

Given the increasing number of possible drug combinations and the genetic diversity of
HIV, it is unlikely that simple hand-crafted rules will capture the complex interplay between
drug cocktails and mutational patterns that determine response to antiretroviral therapy.
Thus, statistical and computational approaches are required for optimal use of the available
drugs in each individual patient. Here we have analysed the ability of various statistical
learning techniques in combination with different feature encodings to predict therapy
outcome from the baseline genotype and the applied drug combination.
The viral genotype is only one of many patient-specific characteristics, such as immune

status or genetic predisposition, and it is straightforward to extend our approach to situ-
ations where additional parameters are available (see Chapter 5). Nevertheless, the viral
genotype has a prominent role among those covariates as it encodes the structure of the
target proteins. The challenge in using these genetic data is to predict the evolution of
the virus population under drug pressure and to understand the complex relationship be-
tween mutational patterns and in vivo drug resistance. We have addressed these issues
by considering, in addition to drug and mutation indicators, features that make use of
phenotypic and evolutionary information. Our computational experiments have identified
the predicted phenotype and the genetic barrier to drug resistance as the most beneficial
features, significantly boosting the predictive power of all classifiers. The choice of the
learning technique had less impact, but LMT consistently showed an advantage over the
other methods. In general, the representations that incorporate in vitro phenotype predic-
tions yielded better performance than the GPS, a purely evolutionary feature, but both
sources of information led to improvements among all tested classifiers and datasets.
The two subanalyses of the complete TCE dataset A showed opposing results. Whereas

the performance was increased compared with dataset A for the balanced sequences (BS),
it was decreased for the balanced therapies (BT). In the case of the BS data, classifiers need
to learn the differences between drug combinations conditioned on the genotype. However,
in effect, with this dataset the dependence on genotype is largely masked by the differing
application profiles of regimen use accumulated in the dataset. For example, lopinavir
appeared in only 38 failing regimens and in 284 successful follow-up therapies. Likewise,
the combination of zidovudine and didanosine defined 60 failures, but not a single success.
This is because the underlying clinical cohort data reflects the historical approval and use
of drugs. For example, the combination of zidovudine and didanosine has been available
for some time and many patients have received it until failure. This is easy to learn
from the data, but the generalization that this combination always fails, although strongly
supported by the data, is certainly wrong and thus misleading when evaluating treatment
options containing zidovudine and didanosine. This problem is eliminated with the other
subset, BT, where classifiers learn differences between mutational patterns conditioned on
the regimen. Because, in learning therapy outcome, we aim to generalize the mutation-drug
interactions and not to reconstruct historical drug-use patterns, we regard the performance
using dataset BT as a more genuine estimate of our ability to predict treatment response.
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We have addressed the concern that the learned models might be biased by the specific
sampling of patients by analysing TCEs from different clinics separately. We found a small
decrease in predictive performance that was more pronounced when the more homogeneous
subset A1 was used for training. This finding highlights the importance of including data
from many different clinical centers. The performance loss was greater for the BS dataset
than for the BT dataset indicating that the patterns of drug use can vary among clinics.
Larger studies that include sufficient data from several clinics need to investigate this source
of bias in more detail in the future.
In the present study, we have dichotomized therapy response into “success” and “fail-

ure”. However, with response defined as the change in VL after a certain time, regression
methods can be used for learning in a similar way, and this is unlikely to affect the results
presented here. Furthermore, most classifiers predict a score (in fact, often a probability)
rather than only the class label. Thus, for a given genotype, they can be used for ranking
drug combinations with respect to the expected therapeutic success. In the future, rank-
ing systems could evolve into valuable tools for supporting the complex decision-making
process of clinicians. However, such systems will have to provide an interface that allows
physicians to incorporate their prior knowledge on a given case, and to constrain the range
of possible regimens by explicitly excluding or including specific drugs. In this way, it is
possible to spare drugs or drug classes, limit total pill burden, or react to adverse effects,
while being able to identify the most promising options from the remaining regimens. The
development of improved therapy rankers will crucially depend on their public availability,
which allows experts to identify strengths and weaknesses of different approaches. For this
reason, we have implemented the prototypical therapy ranker THEO (THErapy Optimizer,
Figure 4.6). It is freely accessible for research purposes as part of the geno2pheno web site4.
In order to produce a ranking of therapies, geno2pheno-THEO (g2p-THEO) applies the
classifier trained for predicting therapy response to the sequences of PR and RT provided
by the user and a predefined set of therapies (consisting of any combination of either two
PIs or two NRTIs plus one NNRTI or one PI). The score produced by the classifier for every
combination of drugs is the expected therapeutic success, which is used to rank the con-
sidered therapies. In particular, g2p-THEO applies the LMT classifier, which was trained
on dataset BT using the genetic barrier encoding as input, to derive the scores needed for
the ranking. This selection of feature encoding and statistical learning method was based
on the cross-validation results obtained on dataset BT. Figure 4.6 depicts the results of a
g2p-THEO analysis of a genotype from a patient failing treatment after first-line therapy
with abacavir, lamivudine and efavirenz (for a list of mutations, see caption of Figure 4.6).
The first two regimens proposed by g2p-THEO are double PI therapies (saquinavir and
lopinavir/ritonavir, and amprenavir and lopinavir/ritonavir) with a predicted probability
of virological success of over 70%.
As discussed above, the statistical model used by g2p-THEO has some limitations. Thus,

suggestions made by g2p-THEO must be used with care. Moreover, the ranking displayed
by g2p-THEO might appear counterintuitive, because it is based on confidence scores
provided by the statistical learning method and the single criterion for therapy success is
reduction of VL below a threshold. Hence, regimens that are highly active tend to occur
among the top-ranked therapies. Although these regimens are most likely to reduce the

4http://www.geno2pheno.org

http://www.geno2pheno.org
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Figure 4.6: The g2p-THEO applet for selecting and evaluating drug combinations. The
applet allows for limiting the number of drugs that can be part of a therapy
(No. of drugs). Furthermore, the daily burden (No. of pills per day) can be
limited. The number of compounds from each drug class can be set (for exam-
ple, 1≤NRTIS≤3), and the use of single drugs can be enforced (for example,
3TC=include) or excluded. Pushing the “Compute” button ranks all remaining
therapies according to the underlying prediction model. In the resulting table,
the components of the regimens are listed (Regimen), the number of pills, how
many pills of every compound are included in the regimen (Comment), and
the score calculated by the model (Success). Additionally, the predictions are
compared in a histogram between all selected (according to the constraints spec-
ified by the user; red bars) and all possible therapies (black bars). The figure
shows the result of a g2p-THEO analysis of a genotype from a patient fail-
ing treatment after first line therapy with abacavir, lamivudine and efavirenz.
The sequence (subtype B) contained the following mutations (compared with
the reference strain HXB2): PR V3I, E35D, S37N, L63P and A71T and RT
L74V, K102N, K103N, Y115F, E122K, D123E, D177E, I178V, V179D, M184V,
G190A, T200A, R211K, L214F, H221Y, T286A, E297R and S322T.
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VL below the threshold necessary for classifying a TCE as a success, less active regimens
might be a better choice for preserving future drug options and might therefore be ranked
higher by clinicians (Jiang et al., 2003). Thus, we emphasize that the purpose of therapy
rankers will always be to support, and not to replace, the complex decision-making process
of clinicians.

In future work, further improvement of the genetic barrier representation might be
achieved by estimating mutagenetic trees for combinations of drugs instead of single drugs.
Such trees would model evolutionary pathways to multi-drug resistance and handle the in-
terplay of drugs within the applied regimen. However, this approach is currently infeasible
due to the lack of sufficient data. We also emphasize that the drug-wise computation of the
genetic barrier, as employed here, facilitates the incorporation of a new drug, because only
one additional mutagenetic tree needs to be learned. Moreover, to a first approximation,
this tree can be learned from in vitro and clinical study data even prior to approval. The
most promising avenues to increased prediction accuracy and improved therapy ranking are
via larger datasets, the use of additional parameters (such as CD4+ T cell counts, plasma
levels of drugs, viral replication capacity, and host genetic factors), analysis of previous
sequences of the viral population that represent important background information, and a
profound understanding of viral evolutionary escape from drug pressure.

In the following section, we provide a retrospective validation of g2p-THEO using data
from European patient cohorts. These type of validations are used to ensure that interpre-
tation approaches are not overfitted to a specific patient cohort. Furthermore, validations
facilitate the comparison between different approaches on independent data, and thereby
allow for objectively rating their performance.

4.3 Clinical Validation

This section describes a joint work with Martin Däumer, Niko Beerenwinkel, Yardena
Peres, Eugen Schülter, Joachim Büch, Soo-Yon Rhee, Anders Sönnerborg, W. Jeffrey Fes-
sel, Robert W. Shafer, Maurizio Zazzi, Rolf Kaiser, and Thomas Lengauer. The work was
published in the Journal of Infectious Diseases under the title “Predicting the Response to
Combination Antiretroviral Therapy: Retrospective Validation of geno2pheno-THEO on
a Large Clinical Database” (Altmann et al., 2009a).

In this section, we present the external validation of g2p-THEO in a dataset containing
7600 treatment-sequence pairs collected in a Europe-wide effort (Aharoni et al., 2007).
This validation is of similar nature as the split of dataset A into A1 and A2 (based on the
center where the data was collected) presented in the previous section. Virological response
was dichotomized, and performance was compared with three state-of-the-art expert-based
interpretation tools. In subsequent analyses, various techniques of statistical learning were
applied to (1) assess the putative improvement in prediction accuracy incurred by applying
models for specific drug combinations and (2) investigate the reliability of g2p-THEO when
applied to unseen combinations of compounds - that is, those combinations that are not
contained in the training dataset.
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4.3.1 Material and Methods

Treatment Change Episodes (TCEs)

The present study used the previously introduced definition of a TCE (Altmann et al.,
2007a), on which g2p-THEO is based (Figure 4.2). As opposed to the previous analysis
we do not make use of the sustained response. Although current assays have a threshold
of sensitivity of 40 or 50 copies, the 400-copy threshold was used to include data obtained
by earlier assays.

Datasets

The statistical model applied by g2p-THEO was trained on data obtained from the Stan-
ford HIV Drug Resistance Database (Rhee et al., 2003) (comprising data from clinical
studies ACTG 320, ACTG 364, GART, and HAVANA) and from two northern California
clinic populations undergoing genotypic resistance testing at Stanford University. From a
total of 25,717 therapies, 10,288 sequences, and 6706 patients, 6359 TCEs were extracted
(4776 failing and 1583 successful therapies). This dataset is hereafter called “Stanford-
California” (A in the previous section). Overrepresentation of certain compounds in failing
or successful therapies within the Stanford-California dataset led the statistical learning
models to often base their decisions only on the drug combination, irrespective of the geno-
type. To eliminate this artifact, g2p-THEO was trained not on the full dataset but on a
subset that contained the same number of failure- and success-associated genotypes for
every drug combination (see Section 4.2 for details). The number of genotypes per drug
combination ranges from two to 446 (2478 TCEs in total). Hereafter, this dataset is called
“Stanford-CaliforniaBT” (for “balanced therapies”). In some analyses, both the Stanford-
California and the Stanford-CaliforniaBT datasets were evaluated again after removal of
ZDV+3TC+IDV combination therapy, which was overrepresented because of the inclu-
sion of the large ACTG 320 dataset. For further analysis, a subset of Stanford-California
containing only drug combinations with ≥ 20 successes and ≥ 20 failures was selected.
Only six treatments met this requirement (Table 4.3); hereafter, this dataset is called
“Stanford-California6”.

Using the same definition, an independent TCE dataset (EuResistDB) was extracted
from the EuResist integrated database (version 2007/05/29), comprising data from Ger-
many (Arevir) (Roomp et al., 2006), Italy (ARCA) (De Luca et al., 2006), and Sweden
(Karolinska Institute). For more details on the EuResist database see Chapter 5. From
a total of 58,195 therapies, 19,258 sequences, and 16,999 patients, we obtained 7603 TCEs
(6217 failing and 1386 successful therapies). For further analysis, we generated the sub-
set EuResistDB6, comprising the same six drug combinations as in Stanford-California6
(Table 4.3). Because the EuResist integrated database includes antiretroviral treatments
started from 1990 to 2007, the main analysis was repeated on the TCE subset derived
from treatments started after 31 December 2000, to minimize the contribution of obsolete
therapy records featuring e.g. non-boosted protease inhibitors.
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Stanford-California6 EuResistDB6
Regimen Failure Success Total Failure Success Total
ZDV+3TC+IDV 223 229 452 108 5 113
d4T+3TC+SQV/r 71 28 99 27 2 29
ddI+d4T+EFV 96 54 150 132 25 157
d4T+3TC+EFV 60 27 87 114 16 130
ddI+d4T+NFV 110 28 138 131 22 153
d4T+3TC+NFV 275 28 303 209 16 225
All regimens 835 394 1229 721 86 807

Table 4.3: Distribution of failing and successful treatment change episodes for the 6
most common regimens in the Stanford-California and EuResistDB datasets
(Stanford-California6 and EuResistDB6 subsets).

Score
1.0 0.5 0.0

ANRS susceptible possible resistance resistant
Rega susceptible intermediate resistant

Stanford HIVdb
susceptible, potential low-level resistance, high-level
low-level resistance intermediate resistance resistance

Table 4.4: Mapping of the classification given by different expert-based interpretation sys-
tems to continuous values.

Interpretation systems

ANRS (Meynard et al., 2002, version 2006/07), Rega (Van Laethem et al., 2002, version
7.1.1), and Stanford HIVdb (Rhee et al., 2003, version 4.3.0) are expert-based interpreta-
tion methods. These algorithms apply carefully handcrafted interpretation rules or tables
derived by expert panels from the analysis of available in vitro and in vivo resistance data.
In addition, some rules of the ANRS algorithm were derived from the statistical association
between baseline genotypic data and virological response. The classification generated by
the interpretation systems was normalized into a score by mapping the verbal classification
to a score according to Table 4.4. Thus, the rating numerically represents the activity of a
drug against the virus on a scale ranging from 0.0 (inactive) to 1.0 (fully active). Individual
scores for NNRTIs and for boosted PIs computed using the Rega algorithm were converted
to 1.0, 0.25, and 0.0 and to 1.5, 0.75, and 0.0, respectively, as indicated by the algorithm
developers. The treatment score or genotypic susceptibility score (GSS) (De Luca et al.,
2004) was then defined as the sum of single-drug scores for the compounds included in the
regimen.
g2p-THEO is a data-driven interpretation system that directly computes a rating for a

combination therapy. This value can be interpreted as the probability of the viral load
being reduced to below the limit of detection during the course of therapy. g2p-THEO
represents the HIV-1 genotype by 49 indicator variables, each of them indicating the pres-
ence (1) or absence (0) of a resistance mutation (Johnson et al., 2005) (the complete
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list: for protease, 10F/ I/R/V, 16E, 20M/R/I, 24I, 30N, 32I, 33F/I/V, 36I/L/V, 46I/L,
47V/A, 48V, 50L/V, 53L, 54L/V/M/T/A/S, 60E, 62V, 63P, 71V/T/I/L, 73S/ A/C/T,
77I, 82A/F/T/S, 84V, 88D/S, 90M, and 93L; for reverse transcriptase, 41L, 44D, 62V, 65R,
67N, 70R, 74V, 75T/M/S/A/I, 77L, 100I, 103N, 106A/M, 108I, 115F, 116Y, 118I, 151M,
181C/I, 184V/I, 188C/L/H, 190S/A, 210W, 215F/Y, and 219Q/E). Similarly, treatment
is encoded using 17 indicator variables, each representing the presence (1) or absence (0)
of a compound in the regimen (for the list of considered compounds, see Table 4.1). In
addition, viral evolution during the course of therapy is represented by the genetic barrier
to drug resistance (Beerenwinkel et al., 2005a) for all drugs in the regimen. The genetic
barrier is the probability that the virus will remain susceptible under drug pressure, given
as a numerical value between 0.0 (no genetic barrier [i.e., the virus is expected to become
resistant]) and 1.0 (insurmountable genetic barrier [i.e., the virus is expected to remain
susceptible]). Together with the indicator variables, the genetic barrier (one value per
drug) is used as input to the logistic model tree (LMT) (Landwehr et al., 2005) applied by
g2p-THEO to compute a score for a combination therapy.

Receiver Operating Characteristic (ROC) Curves

ROC curves depict classifier performance by giving a true-positive rate (TPR; percentage
of correctly predicted successes) for every false-positive rate (FPR; percentage of failing
therapies [i.e., with a genotype obtained during treatment] that were predicted to be suc-
cessful [i.e., to decrease viral load to <400 copies/ml]). The area under the ROC curve
(AUC) summarizes the performance and is a convenient measure for comparing scoring sys-
tems without the need to provide a particular cutoff (Brun-Vézinet et al., 2004). Briefly,
the AUC is a value between 0.0 and 1.0 corresponding to the probability that a randomly
selected success receives a higher score than a randomly selected failure (Fawcett, 2006).
The ROCR software (version 1.0-2) (Sing et al., 2005a) was used for the ROC analysis.

Comparative Analysis

The statistical model applied by g2p-THEO was used to predict the outcome of the
genotype-therapy pairs in the external EuResistDB dataset. The performance was com-
pared with that of the three expert-based interpretation tools: ANRS, Rega, and Stanford
HIVdb. The EuResistDB dataset was used as an independent test set. One hundred boot-
strap replicates of the EuResistDB dataset were used for computing standard deviations.

Stability

To further analyze the robustness of the approach, the prediction of response to drug
combinations that were not present in the training data was simulated by a variant of
cross-validation on the training data. In standard cross-validation, the available data are
split randomly into n equally sized non-overlapping subsets. Then, n − 1 pooled subsets
are used as a training set, and the remaining subset is used as a test set to compute
the performance of the model. This procedure is repeated n times. Hence, every subset
is used as a test set once. To simulate the prediction of unseen drug combinations, the
splits were not carried out randomly, and every subset contained only TCEs with the same
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Analysis, setting Kernel ε C

Stability analysis
All Linear 0.1 1
Regimen-specific models
Regimen specific Linear 0.1 C optimizing AUC in 5-fold CV
All Linear 0.1 4 (optimized AUC in 10-fold CV)

Table 4.5: Support vector machine settings. C is the cost factor, CV refers to cross-
validation.

drug combination. Results derived by this “therapy-fold” cross-validation were compared
with results of standard cross-validation, with the number of folds equal to the number of
different drug combinations. A substantial loss in performance (e.g., a loss of 0.1 in AUC)
for the therapy-fold cross-validation compared with the normal protocol indicates unstable
behavior with respect to unseen drug combinations, because it indicates the requirement to
include examples of the drug combination that should be predicted in the training data for
maintaining the performance. The experiment was repeated on the special subset Stanford-
CaliforniaBT and on the complete EuResistDB dataset. Because of limited computational
resources, the LMT applied by g2p-THEO was replaced by the faster linear support vector
machines (SVMs) (Chang and Lin, 2001), with similar predictive performance (see e.g.
Table 4.2). SVM settings are listed in Table 4.5.

Regimen-specific Models

For some drug combinations, many samples were available. Models trained exclusively on
TCEs for one drug combination are expected to predict response to that regimen more
accurately than models trained on all available TCEs. The Stanford-California6 subset
contained sufficient data for training 6 regimen-specific models and for measuring their
performance. The performance of the individual models was assessed by 10 repetitions of
five-fold cross-validation on data comprising only one drug combination. The performance
of the full model was assessed by 10 repetitions of a variant of five-fold cross-validation in
which all TCEs with other drug combinations were added to the four subsets forming the
training data. SVMs with a linear kernel were used as a statistical learning method. SVM
settings are listed in Table 4.5. Performance in an independent test set was assessed by
predicting the outcome of TCEs in EuResistDB6 with the full model and the six regimen-
specific models (10 repetitions). Results were compared with those obtained using g2p-
THEO and the three expert-based interpretation tools.

4.3.2 Results

Comparative Analysis

Figure 4.7 depicts the ROC curves for the three expert-based interpretation tools and
g2p-THEO. The curves for Stanford HIVdb, ANRS, and Rega did not differ substantially,
resulting in comparable TPRs and FPRs for every GSS cutoff. In contrast, in the FPR
range from 0% to 40%, the curve for g2p-THEO was distinctly located above all the other
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curves. For higher FPRs, all curves proceeded with similar slopes. The AUC value for
g2p-THEO was significantly larger than those for the expert-based approaches (p < 0.001;
paired Wilcoxon test). ROC curves allow for a detailed analysis of specific points on the
curve. For example, at a FPR of 20% (close to a GSS cutoff of 2.5 for Rega and ANRS
and of 2.0 for Stanford HIVdb), Stanford HIVdb, ANRS, and Rega yielded TPRs of 44.2%
(±3.2%), 47.8% (±2.7%), and 46.5% (±2.2%), respectively. In contrast, at the same FPR
g2p-THEO achieved a TPR of 64.0% (±1.6%). On the other hand, at a false-negative rate
(FNR) of 10% (close to a GSS cutoff of 1.0 for all systems), Stanford HIVdb, ANRS, and
Rega yielded true-negative rates of 54.1% (±2.0%), 51.0% (±2.1%), and 55.9% (±0.8%),
respectively, compared with 54.7% (±1.8%) for g2p-THEO. Restriction of the EuResistDB
dataset to therapies started after 31 December 2000 led to an even more pronounced
difference in AUC between g2p-THEO (0.824±0.006) and the expert-based approaches
(for Stanford HIVdb, 0.728±0.008; for ANRS, 0.733±0.008; for Rega, 0.754±0.007).

Stability

Table 4.6 summarizes the results of the stability analysis. The standard cross-validation
performance on the Stanford-California dataset was in line with previously computed re-
sults (Table 4.2). For both Stanford-California datasets containing the highly prevalent
ZDV+3TC+IDV regimen, the therapy-fold cross-validation yielded slightly worse results
than the standard protocol (difference in AUC of ∼ 0.03). In contrast, in the EuResistDB
dataset and both Stanford-California datasets without ZDV+3TC+IDV, no loss in perfor-
mance was observed.

Regimen-specific Models

Table 4.7 shows the mean AUC and standard deviation for the regimen-specific mod-
els and the full model for the six most common drug combinations in the Stanford-
California dataset. The results for the combination of d4T+3TC+SQV/r were the worst
for both models, and there was no benefit in using the regimen-specific model. How-
ever, for the remaining five drug combinations, the benefits of regimen-specific models
ranged from 0.017 to 0.048 and reached statistical significance. Within the EuResistDB6
dataset, an insufficient number of successful TCEs was available for ZDV+3TC+IDV
and d4T+3TC+SQV/r (Table 4.3). The full model outperformed the regimen-specific
model only for d4T+3TC+EFV. For the remaining three drug combinations, the benefit
of the regimen-specific model was more pronounced than in the cross-validation setting and
ranged from 0.046 to 0.301 for d4T+3TC+NFV, a combination for which the full model
actually failed to make useful predictions. The LMTs in g2p-THEO also outperformed
the regimen-specific model for d4T+3TC+EFV. In the remaining three cases, the benefit
of the regimen-specific models ranged from 0.011 to 0.082. All regimen-specific models
outperformed the expert-based methods.
Figure 4.8 depicts the ROC curves for the regimen-specific models (g2p-THEO-SVM-

RS), the full model (g2p-THEO-SVM), g2p-THEO, and the expert-based methods applied
to the EuResistDB6 dataset. The full model performed better than the expert-based
methods in the area below a FPR of 32% but worse in the remaining region. As in
the previous ROC plot (Figure 4.7), g2p-THEO performed better than the expert-based
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Figure 4.7: Receiver operating characteristic (ROC) curves for the EuResistDB dataset.
Every method is represented by a single ROC curve, namely Stanford HIVdb,
ANRS, Rega, and geno2pheno-THEO (g2p-THEO). Each point on the curve
represents a classifier with a different cutoff and allows the true-positive rate
(TPR) and false-positive rate (FPR) for that cutoff to be determined. Whiskers
indicate the standard deviations of the TPRs at a specific FPR. The genotypic
susceptibility score (GSS) and predicted success probability (p) cutoffs leading
to specific TPR and FPR values are indicated within the plot for expert-based
approaches and g2p-THEO, respectively. For each method, the area under the
ROC curve and its standard deviation are given parenthetically in the box.

interpretation tools in the area below a 50% FPR and performed as well in the remaining
region. However, the regimen-specific models outperformed the other methods over the
whole range of FPRs. More specifically, they yielded a TPR of 58.4% at a FPR of 20%,
compared with 39.8% for the expert-based methods and 53.6% for g2p-THEO.

4.3.3 Discussion

Validation of HIV genotype interpretation systems is a crucial step in translating computer-
based methods into clinically effective treatment decision support tools. In the present
study, using an external dataset of ≈ 7600 TCEs extracted from the EuResist integrated
database, the recently developed g2p-THEO system was shown to outperform the three
most widely used expert-based interpretation systems. Although the EuResist dataset
included many obsolete therapies because of its long observation period, the same results
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AUC
Drug combinations, Standard Therapy-fold

Dataset no. cross-validation cross-validation
Stanford-California
With ZDV+3TC+IDV 876 0.901 0.870
Without ZDV+3TC+IDV 875 0.898 0.895
Stanford-CaliforniaBT
With ZDV+3TC+IDV 323 0.838 0.812
Without ZDV+3TC+IDV 322 0.812 0.813
EuResistDB 712 0.847 0.844

Table 4.6: Area under the receiver operating characteristic curve (AUC) values obtained
by standard cross-validation and therapy-fold cross-validation. The rows of the
table correspond to the five datasets, with both Stanford-California datasets
studied with and without the ZDV+3TC+IDV drug combination, in light of the
overrepresentation of this regimen caused by the ACTG 320 data. (Stanford-
CaliforniaBT is the “balanced therapies” subset.) Note that computation of
the AUC requires positive and negative samples, but because of the nature of
therapy-fold cross-validation, it could not be ensured that positive and nega-
tive samples were present in every subset of the cross-validation. Thus, it was
not possible to compute fold-wise AUC values or their standard deviations and
statistical significance.

were confirmed when therapies started before 1 January 2001 were removed. The g2p-
THEO system was more accurate than ANRS, Stanford HIVdb, and Rega by 16.2% -
19.8% in the detection of therapeutic success (20% FPR). However, all of the systems
were comparable in detecting treatment failure at a 10% FNR. This finding suggests that
expert-based systems are better suited to detect the failure of therapy than to detect
success, probably because their original purpose was to detect resistance to individual
drugs. However, whether a treatment will most likely be successful is exactly the response
a user expects from a decision support tool. Current expert-based approaches are indeed
evolving into clinically oriented tools aimed at building effective combination regimens.
Computing a regimen GSS by simple summation of the individual drug scores derived by
expert-based systems fails by definition to weight both different drug potencies and drug
interaction effects. However, such an unweighted GSS is still commonly used (Maggiolo
et al., 2007; Cozzi-Lepri et al., 2007) in the absence of any agreed-upon standard for a
weighted GSS. Notably, the latest Rega algorithm has introduced arbitrary drug weights
in an attempt to account for the expected increased potency of ritonavir-boosted PIs and
a lack of intermediate NNRTI activity.
The superior performance of g2p-THEO may have derived from two factors. First, the

calculated genetic barrier provides useful information by estimating the probability of viral
evolution under drug pressure (Altmann et al., 2007a). Second, the training process assigns
weights to all drugs. Hence, during the decision making process, drugs are not treated
equally. As shown by Altmann et al. (2007b, 2009b), this can significantly improve the
performance of genotype interpretation tools. On the other hand, g2p-THEO is currently
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Figure 4.8: Receiver operating characteristic (ROC) curves for regimen-specific models ap-
plied to the EuResistDB6 dataset. Every method is represented by a ROC
curve for a subset of the EuResistDB data comprising six different treatments.
In addition to the methods depicted in Figure 4.7, ROC curves are shown for
g2p-THEO-SVM (g2p-THEO in which logistic model trees were replaced by
SVMs) and g2p-THEO-SVM-RS (g2p-THEO using regimen-specific SVMs).
For each method, the area under the ROC curve is given parenthetically in the
box.

limited to a set of well-established resistance mutations, which might explain its inability
to improve the detection of failing regimens.

In the computation of a score for a drug combination, the robustness of the tool with
respect to unseen drug combinations is an important issue. In both Stanford-California
datasets, a slight decrease in the AUC was observed in predictions for unseen drug com-
binations. Overrepresentation of ZDV+3TC+IDV therapy due to inclusion of the ACTG
320 clinical trial in the datasets was identified as a possible confounder of this analysis,
because no decrease in performance with unseen drug combinations was observed after
removal of TCEs containing the ZDV+3TC+IDV combination. Thus, our stability anal-
ysis indicated that g2p-THEO returns reliable scores for unobserved drug combinations.
The major reason for the preservation of performance is that the prediction is based on
a linear model. Indeed, during the learning process of the linear model, contributions of
every single covariate to the outcome are computed. This also holds for drugs in a regimen,
because the impact has to be distributed among these drugs. In the end, observed and
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unobserved drug combinations are both composed of observed compounds. However, this
property is also a potential disadvantage of linear models. Specifically, if the prediction
is based on a linear model, the synergistic effects between drugs or mutations cannot be
represented unless a large number of covariates are introduced to explicitly model these
effects. In contrast, in regimen-specific models all mutations are evaluated in the context
of the same drug combination, thus rendering the explicit modeling of interactions un-
necessary. In the Stanford-California6 dataset, the regimen-specific models for all drug
combinations exhibited increased performance compared with the full model, even though
the full model had access to many more training samples. This finding was confirmed in
independent data. However, the benefit of regimen-specific models decreased when they
were compared with the full statistical model for g2p-THEO. This can be explained by
the fact that g2p-THEO applies LMTs that directly train multiple linear models on dis-
tinct subsets of the training data. Unfortunately, only a few outdated regimens gave rise
to enough training data for regimen-specific models. However, a promising approach has
been recently proposed (Bickel et al., 2008), one that pools data on “similar” regimens to
overcome this limitation in generating regimen-specific models.
A major issue with any fully data-driven system is the inability to generate predictions

for newly licensed compounds because of the delayed availability of sufficient training data.
This drawback can be addressed only by multicenter efforts and cooperation between drug
companies and regulatory bodies for immediate release of clinical trial data. However,
because an optimized background regimen is recommended for the effective use of any
new compound, interpretation systems are still relevant for choosing the backbone drugs,
particularly in heavily experienced patients. Expert-based systems can complement data-
driven systems for predicting the activity of novel drugs until sufficiently large genotype-
response datasets are available. An attempt to combine expert scores for novel drugs with
a data-driven approach will be presented in Section 5.8.
Data-driven systems need a large amount of data for training, so observational cohort

data are often used. These provide a valuable source for assessing the impact that drug
resistance has on the response to treatment but typically lack other relevant information,
including adherence levels and pharmacokinetics data. Weighting for these factors is ex-
pected to help us develop better systems aimed at building effective regimens. It must also
be noted that modern and future antiretroviral treatment strategies are expected to limit
the development of drug resistance by providing increased potency and convenience, per-
haps making treatment toxicity issues relatively more relevant than resistance over time.
However, drug resistance and cross-resistance remain issues for a substantial proportion of
patients harboring viral populations that display a complex mutational pattern because of
multiple treatment failures. In addition, toxicity is also a major contributor to the selection
of drug resistance through decreased adherence. Developed as a clinically oriented tool,
g2p-THEO allows the user to exclude specific drugs for toxicity issues and provides a total
pill count for each regimen. Although no data-driven system is meant to replace a compre-
hensive patient evaluation by an expert HIV specialist, validated tools such as g2p-THEO
can provide an appropriate support to most care-givers of HIV-infected patients.
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5 EURESIST: Uniting Data for Fighting HIV

In the previous chapter we demonstrated that features derived from the viral genotype
are helpful in predicting response to combination therapy. The predictive performance of
statistical learning models, however, depends to a great deal on the amount of available
training data. In the case of geno2pheno approximately 1000 genotype-phenotype pairs
were sufficient for building well performing models for inferring phenotypic drug resistance
against a singe drug from genotype. The predicted resistance information is based on
information derived in vitro. Clinicians, however, are mainly interested in knowing whether
a drug-cocktail will work in vivo or not. The fact that anti-HIV drugs can be used in
hundreds of combinations calls for massive amounts of training data for systems such as
g2p-THEO that directly predict response to combination therapy. The HIV Resistance
Database Initiative (RDI) was the first international initiative aiming at the integration
of multiple databases from different centers for collecting sufficient data to train such
statistical models (Larder et al., 2002). Since its foundation in 2002, the RDI database
grew from 3,500 to approximately 30,000 patients in 20071. However, till now RDI failed
to provide a freely accessible web tool that predicts response to combination treatments.
This chapter describes our work within the EU project: EuResist. EuResist, like

RDI, aims at the collection of data and a the development of a free web accessible tool
that predicts response to combination treatments. The current version of the database
holds approximately records from 33,000 different patients. Unlike RDI, EuResist made
the prediction system freely available already in 2007. This chapter begins with a back-
ground on the EuResist project (Section 5.1). In Sections 5.2 and 5.3 we introduce the
individual EuResist prediction engines and the combination strategies, respectively. The
final web service is described in Section 5.5. Sections 5.6 and 5.7 investigate how changes
in the definition to treatment response affect the prediction performance. Furthermore, in
Section 5.8 an approach for overcoming a serious limitation of all prediction engines aim-
ing at inferring response to combination therapies, namely the update ability with respect
to novel compounds, is studied. Finally, section 5.9 explores the possibility of predicting
response to antiretroviral therapy based on the treatment history alone.

5.1 Project Background

The EuResist project aimed at developing a European integrated system for clinical
management of antiretroviral drug resistance. The system should provide the clinicians
with a prediction of response to antiretroviral treatment in HIV patients, thus helping
the clinicians to choose the best drugs and drug combinations for any given HIV genetic
variant. To this end, a massive European integrated dataset was created, linking some of
the largest locally existing resistance databases.

1source: http://www.hivrdi.org
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The project involved participants from eight institutions. Three institutions acted as
data providers and consultants concerning virological knowledge and clinical aspects of
HIV treatment, namely the University of Siena, the Karolinska Institute in Stockholm,
and the University of Cologne. Four participating institutions were involved in modeling
the prediction engines: IBM Israel, KFKI Research Institute for Particle and Nuclear
Physics Hungarian Academy of Sciences, Informa S.r.l., and the Max Planck Institute for
Informatics. A division of IBM Israel was also responsible for the integration of the multiple
data sources into a unified database, and Informa S.r.l. was concerned with the overall
project management and the development of the web front end for the prediction engine.
The Kingston University dealt with matters of data quality of the integrated database.
Like other HIV resistance tools, the response models should be able to provide a pre-

diction even when the genotype is the only available information. The data collected in
the resistance databases, however, enable exploiting patient related data: for instance the
patient’s treatment history, the current immune status, and demographic data. To allow
for both: the use of the genotype only and the exploitation of additional data, the model-
ing was restricted to genotype and treatment information only (minimal feature set) and
opened for all available information (maximal feature set). In operation mode, the model
chosen for the prediction depends on the information provided by the user.
A considerable effort within the project was the definition of the standard datum. Briefly,

the standard datum is the equivalent to the TCEs in the previous chapter and defines
which data from the database are considered for learning and what has to be learned.
For instance, if one is interested in virological response to an anti-HIV treatment around
three months after onset of the regimen (short-term response), then one has to extract
treatments from the database where a viral load measurement is available around three
months of treatment. The standard datum definition can also be a source of error or
overfitting. For instance, in the work by Larder et al. (2007) the time between onset of the
treatment and the viral load measure is used as a feature. In their study, one treatment
with different viral load measurements gave rise to at most three training points for the
same statistical model. The setup ensured that the patients in training and test set formed
a distinct set. However, the high correlation of the cases, due to multiple samples from the
same treatment, in the small test set of 50 instances leads very likely to an overestimation
of model performance. Another important issue, which the standard datum definition has
to address, concerns the baseline measurements, i.e. what is the maximal allowed time
span between measurement of a biomarker and start of the therapy so that the value can
be considered a baseline measurement. For example, a genotype obtained about one year
before the treatment start is clearly too outdated to serve as a baseline genotype. On the
other hand, a genotype that was generated a few weeks before treatment start is clearly
suitable. In general, the stricter a standard datum definition, the fewer data are available
for the statistical learning step, thus the definition has to find a good balance between
strictness and resulting training data.
The standard datum definition applied within the EuResist project considers values

that were obtained at most three months before start of the regimen as baseline values
– only if there was no intermediate treatment of at least two weeks length between the
measurement and start of the treatment to be considered. With this definition, EuResist
follows the recommendations of The Forum for Collaborative HIV Research. Furthermore,
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Figure 5.1: Standard datum. A treatment change is considered a valid training/testing
instance if the baseline measures (viral genotype and VL) were obtained at
most 90 days before start of the new treatment and given that there was no
other treatment lasting longer than 14 days between time point of measurement
and start of treatment. A treatment is considered successful if the VL at 8
weeks (±4) is below the limit of detection (here: 500 copies of viral RNA per
ml blood serum) or constitutes a 100-fold reduction compared to the baseline
value.

the EuResist standard datum focuses on initial response around eight (four to 12) weeks
of treatment; one treatment can only give rise to only one training instance since only
the closest measurement to the eight weeks time point is considered. Thus, the definition
facilitated a regression approach, i.e. predicting the change in viral load between the
baseline measurement and the follow-up measurement. In addition, like in the development
of g2p-THEO, a classification approach was investigated within the project. To this end,
treatment response was dichotomized into success and failure based on the reduction of
viral load. Precisely, if the viral load could be reduced below the limit of detection, i.e. 500
copies of viral RNA per ml blood serum, then the treatment was considered a success. Some
patients, though, start with extremely high viral load values and a reduction below the limit
of detection is hard to achieve within the short time frame. Thus, alternatively, a success
can be achieved by a 100-fold reduction of the viral load compared to the baseline value.
Figure 5.1 depicts a schematic overview of the standard datum definition. Modifications
of this standard datum definition that focus on sustained response (VL at 24±8 weeks)
are studied later in this chapter.

Figure 5.2 depicts the growth of the EuResist Integrated database (EIDB) over the
period of the project. The amount of patients and HIV sequences almost doubled from
initially about 17,000 to now 34,000 entries. Likewise, the number of stored treatments
nearly tripled from 35,000 to 98,000. The observed increase of data is not only a result of
the increased size of the initial three databases, but also a direct consequence of the addi-
tion of new databases. In November 2007 the Luxembourg database joined the EuResist
integrated database, and in October 2008 three additional databases started their collab-
oration with EuResist: IRSICAIXA Foundation (Spain), Catholic University of Leuven
(Belgium), and Univeristy of Brescia (Italy). More databases are expected to join the
EuResist effort. It strikes that the number of usable standard datum instances is by far
smaller than the number of sequences in the database. This discrepancy is a result of the
strict requirements posed by the standard datum definition. For instance a sequence has to
be available at most 90 days prior to treatment start, thus not all available sequences in the
database gave rise to a usable learning instance. However, the collection effort increased
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Figure 5.2: Growth of the EuResist integrated database (EIDB). The graph depicts the
increase in patients, viral sequences, and recorded treatments in the database
of the time of the project (scale on the right). The blue line (scale on the
left) corresponds to the increase of standard datum (SD) instances available
for training and testing the prediction engine.

the available training instances from about 1500 to over 5000. Since not all experiments
have been carried out with the most recent release of the EuResist integrated database,
we provide for every computer experiment the release date of the database that was used,
and thus allowing to put the results in the correct context.

5.2 EURESIST Prediction Engines

Within the EuResist project four institutions developed statistical models for predicting
the response to combination antiretroviral therapy. Three of the prediction engines were
selected for the final system to be implemented as a web service. Our contribution, the
Evolutionary (EV) engine, was based on the g2p-THEO software described in Chapter 4.
The two other contributions the Generative Discriminative (GD) engine and the Mixed
Effects (ME) engine originate from the Machine Learning Group of the IBM Research
Laboratory in Haifa, Israel and from the Department of Computer Science and Automation
of the University of Roma TRE located in Rome, Italy, respectively. In the following
sections we provide a brief summary for the GD and ME engines. Furthermore, we specify
the differences between the original g2p-THEO software and our EV engine.
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Figure 5.3: The Bayesian network used in the GD engine. Variables indicating use of
individual drugs are connected to the outcome (black arrows) and to indicators
for their drugs class or in the case of the maximal feature set: historic use of
a drug from the same class (green arrows). The variables in the middle layer
representing the (historic) use of a drug class are also connected to the outcome
variable (blue arrows).

5.2.1 Generative Discriminative Engine

The Generative Discriminative (GD) engine applies generative models to derive additional
features for the classification using logistic regression. When inspecting Figure 5.2 it strikes
that only a small percentage of therapies in the database (Table 5.1) have an associated
genotype and are therefore suitable for training a classifier, which is supposed to receive
sequence information. However, a much larger fraction of the therapies can be labeled
as success or failure on the basis of the baseline and follow-up VL measures alone, since
for the labeling no viral genotype is required. The GD engine thus trains a Bayesian
network on about 20,000 therapies (with and without associated genotype). The network
is organized in three layers and uses an indicator for the outcome of the therapy, indicators
for individual drugs, and indicators for drug classes (Figure 5.3). This generative model
is used to compute a probability of therapy success on the basis of the drug combination
alone. This probability is used as an additional feature for the classification by a logistic
regression model: the discriminative step of the approach. Furthermore, indicators for
individual drugs and single mutations are input for the logistic regression.

Indicators representing a drug class are replaced with a count of the number of pre-
viously used drugs from that class when working with the maximal feature set. In this
way information about past treatments is incorporated. In addition to features from the
minimal set, the maximal feature set comprises indicators for mutations in previously ob-
served genotypes, the number of past treatment lines, and the VL measure at baseline.
Correlation between single mutations and the outcome of the therapy was used to select
relevant mutations for the model. A detailed description on the network’s setup and the
selected mutations can be found in Rosen-Zvi et al. (2008).
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5.2.2 Mixed Effects Engine

The Mixed Effects (ME) engine explores the benefit of including second- and third-order
variable interactions. Basically, since modern regimens combine multiple drugs, binary
indicators representing usage of two or three specific drugs in the same regimen are intro-
duced. Further indicators represent the occurrence of two specific mutations in the viral
genome for modeling interaction effects between them. Moreover, interactions between
specific single drugs and single mutations or pairs of drugs and single mutations are repre-
sented by additional covariates. In addition to the terms modeling the mixed effects, other
clinical measures (VL and CD4+ T cell counts), demographic information (risk factor,
country of infection, risk, sex, . . . ), covariates based on previous treatments (indicators
for previous use of drugs and drug classes), and the predicted viral subtype are used as
additional covariates.
The large number of features (due to the mixed effects) requires a strong effort in feature

selection. Thus, multiple feature selection methods were used for generating candidate
feature sets. Filters and embedded methods, i.e. methods that are intrinsically tied to a
statistical learning method, were applied sequentially: (i) univariable filters, such as χ2

with rank-sum test and correlation-based feature selection (Hall, 1999), were applied to
reduce the set of candidate features; (ii) embedded multivariate methods, such as ridge
shrinkage (Le Cessie and Van Houwelingen, 1992) and the Akaike information criterion
(AIC) selection (Akaike, 1974) were used to eliminate correlated features and to assess the
significance of features with respect to the outcome in multivariate analysis. In multiple 10-
fold cross-validation runs on the training data the performance of the resulting feature sets
were compared with a t-statistic (adjusted for sample overlap and multiple testing). The
approach leading to the best feature set was applied on all training samples to generate the
final model. Unlike the GD engine, the ME engine employs one logistic regression model
that only uses the maximal feature set. Missing variables, e.g. when working with the
minimal feature set, are replaced by the mean (or mode) of that variable in the training
data.

5.2.3 Evolutionary Engine

As stated before, one major obstacle in HIV-1 treatment is the development of resistance
mutations. The Evolutionary (EV) engine uses derived evolutionary features to model
the virus’s expected escape path from drug therapy. The representation of viral evolution
is based on mutagenetic trees. Unlike in g2p-THEO the mixture of mutagenetic trees
comprises only two components, the noise component and one tree that was estimated
from the data. A further difference to the original approach concerns the way of how
mutational patterns that define complete drug resistance against an individual compound
are identified. This information is crucial for computing the genetic barrier to drug resis-
tance. The original approach, which is briefly described in Section 4.1.2, uses the available
genotype-phenotype pairs. Since there are only about 1,000 such pairs, it is very likely that
mutational patterns that can occur are not observed within the small sample. Here, we
used geno2pheno for predicting the drug resistance phenotypes for approximately 16,000
viruses stored in the EIDB. Based on this much larger sample the procedure of identifying
resistant patterns was carried out as initially explained. The modified approach resulted in
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genetic barrier values that were more predictive for response to treatment than the values
obtained with the original protocol (increase of 0.02 and 0.027 in AUC and correlation,
respectively, in a 10-fold cross-validation on the training set). The genetic barrier to drug
resistance was provided together with other features, like indicators for individual drugs
in the treatment and indicators for IAS mutations in the genotype as in the prototype
g2p-THEO. In the maximal feature set, indicators for previous use of a drug and the base-
line VL measure extend this list. As a general improvement over the original g2p-THEO
prototype, interactions up to second order between indicator variables were considered as
well. This was achieved by introducing further indicator variables that explicitly model
these interactions.
The resulting large number of covariates required the implementation of a feature selec-

tion step as part of the training process of the EV engine. The chosen feature selection
approach was based on SVMs with a linear kernel. The approach works in three steps: (i)
optimization of the misclassification cost parameter C in a 10-fold cross-validation setting
to maximize the area under the ROC curve (AUC); (ii) generation of 25 different SVMs
by five repetitions of five-fold cross-validation using the optimized cost parameter; (iii)
computation of the z-score for every feature. All features with a mean z-score larger than
2 were selected for the final model based on logistic regression.

5.3 Combining Classifiers

In order to provide the end-user of the prediction system with a single outcome for a request,
instead of multiple results generated by the different engines, the three classifications have
to be combined to one final decision. In principle, there are two approaches for combining
classifiers, namely classifier fusion and classifier selection. In classifier fusion, complete
information on the feature space is provided to every individual system and all outputs
from the systems have to be combined; in classifier selection, every system is an expert in
a specific domain of the feature space and the local expert alone decides for the output
of the ensemble. However, the individual classifiers described above were designed to be
global experts, thus only classifier fusion methods were explored.
Methods for classifier fusion can operate on class labels or continuous values (e.g. sup-

port, posterior probability) provided by every classifier. The methods range from simple
non-trainable combiners like the majority vote, to very sophisticated methods that require
an additional training step. In order to find the best combination method we compared sev-
eral approaches ranging from simple methods to more sophisticated ones. All results were
compared to a combination that has access to an oracle telling which classifier is correct.
Intuitively, the predictive performance of this oracle represents the upper bound on the
performance that can be achieved by combining the classifiers. The following subsections
briefly introduce the combination methods considered.

Non-trainable Combiners

As mentioned above, there are a number of simple methods to combine outputs from
multiple classifiers. The most intuitive one is a simple majority vote, whereby every in-
dividual classifier computes a class label (in this case success or failure) and the label
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that receives the most votes is the output of the ensemble. One can also combine the
posterior probability of observing a successful treatment as computed by the logistic re-
gression. This continuous measure can be combined using further simple functions: mean
returns the mean probability of success by the three classifiers (Kittler et al., 1998); min
yields the minimal probability of success (a pessimistic measure); max results in the max-
imal predicted probability of success (an optimistic measure); median returns the median
probability.

Meta-classifiers

The use of meta-classifiers is a more sophisticated method of classifier combination, which
uses the individual classifiers’ outputs as input for a second classification step. This allows
for weighting the output of the individual classifiers. In this work we applied quadratic
discriminant analysis (QDA), logistic regression, decision trees, and naïve Bayes (operating
on class labels) as meta-classifiers.

Decision Templates and Dempster-Shafer

The decision template combiner was introduced by Kuncheva et al. (2001). The main idea
is to remember the most typical output of the individual classifiers for each class, termed
decision template. Given the predictions for a new instance by all classifiers, the class with
the closest (according to some distance measure) decision template is the output of the
ensemble.
Let ~x be an instance, then DP~x is the associated decision profile. The decision profile for

an instance contains the support (e.g. the posterior probability) by every classifier for every
class. Thus, DP~x is an I×J-matrix, where I and J correspond to the number of classifiers
and classes, respectively. The decision template combiner is trained by computing the
decision templates DT for every class. The DT for the class j is simply the mean of all
decision profiles for instances ~x belonging that class. Hence,

DT j =
1
Nj

∑
~x∈ωj

DP~x, ∀j ∈ {1, . . . , J},

where Nj is the number of elements in class ωj . For a new sample, the corresponding
decision profile is computed and compared with the decision templates for all classes using
a suitable distance measure. The class with the closest decision template is the output
of the ensemble. Thus, the decision template combiner is a nearest-mean classifier that
operates on decision space rather than on feature space. We used the squared Euclidean
distance to compute the support for every class:

µj = 1− 1
JI

J∑
j′=1

I∑
i=1

[DT j(j′, j)−DP~x(j′, i)]2,

where DTj(j′, i) is the (j′, i)-th entry in DTj . Decision templates were reported to outper-
form other combiners, e.g. Kuncheva et al. (2001) and Kuncheva (2002).
Decision templates can also be used to compute a combination that is motivated by the

evidence combination of the Dempster-Shafer theory. Instead of computing the similarity
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between a decision template and the decision profile, a more complex computation is carried
out as described in detail in Rogova (1994). We refer to these two methods as Decision
Templates and Dempster-Shafer, respectively.

Clusters in Decision Space

Regions in decision space where the classifiers disagree on the outcome are of particular
interest in classifier combination. Therefore, we propose the following method that finds
clusters in decision space and learns separate logistic regression models for every cluster
for fusing the individual predictions. Let si be the posterior probability of observing a
successful treatment predicted by classifier i. Then we express the (dis)agreement between
two classifiers by computing:

αij =

{
0 classifiers i and j agree on the label,

si − sj else,

for all i and j where i < j. Thus, in case of disagreement between two classifiers, the
computed value expresses the magnitude of disagreement. These agreements are computed
for all instances of the training set and used as input to a k-medoid clustering (Rousseeuw
and Kaufman, 1990). For all resulting k clusters, an individual logistic regression is trained
on all instances associated with the cluster using the si as input. The idea is that in
clusters where e.g. classifier 1 and 2 agree, and classifier 3 tends to predict lower success
probabilities the logistic regression can either increase or decrease the influence of classifier
3, depending on how often predictions by that classifier are correct or incorrect, respectively.
When a new instance has to be classified then first the agreement between the classifiers is

computed for locating the closest cluster. In a second step the logistic regression associated
with that cluster is used to calculate the output of the ensemble. The number of clusters
k, the only parameter of this method, is optimized in a 10-fold cross-validation. The
approach is motivated by the behavior knowledge space (BKS) method (Huang and Suen,
1995), which uses a look-up table to generate the output of the ensemble. However, the
BKS method is known to easily overtrain, and does not work with continuous predictions.

Local Accuracy-based Weighting

Woods et al. (1997) propose a method that uses one k-nearest-neighbor (knn) classifier
for every individual classifier to assess the local accuracy of that classifier given the input
features. The final output is then solely given by the most reliable classifier of the ensemble.
Since the three classifiers in this setting are trained to be global experts, we applied the
proposed method to compute the reliability estimate for each classifier given the features
of an instance. In contrast to the method proposed by Woods et al. (1997), the output is
a weighted mean based on these reliability estimates.
In order to use a knn classifier as a reliability estimator the labels from the original

instances are replaced by indicators of whether the classifier in question was correct on
that instance or not. With the replaced labels and the originally used features the knn
classifier reports the fraction of correctly classified samples in the neighborhood of the
query instance. This fraction can be used as a local reliability estimator. The output by
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the ensemble is then defined by a weighted mean:

s̄ =
∑

i risi∑
i ri

where si and ri are the posterior probability of observing a successful treatment and the
local accuracy for classifier i, respectively. For simplicity, only Euclidean distance was used
in the knn classifier, the number of neighbors k was optimized in a 10-fold cross-validation
setting.

Combining Classifiers on the Feature Level

As described in Section 5.2, every individual classifier uses a different feature set, specifi-
cally, different derived features, but the same statistical learning method. Thus, a further
combination strategy is the use of all features selected for the individual classifier as in-
put to a single logistic regression rather than computing a consensus of the individual
classifiers’ predictions.

5.4 Predictive Performance of the EURESIST Prediction Engine

5.4.1 Data

About 3,000 instances in the EIDB (version from 2007/11/27) met the requirements of
the standard datum definition and can therefore be used as learning instances. From this
complete set, 10% of the data were randomly set aside and used as an independent test
set (Table 5.1). The split of the training data in 10 equally sized folds was fixed, allowing
for 10-fold cross-validation of the individual classifiers. The same 10 folds were used for
a 10-fold cross-validation of the combination approaches. Classification performance was
measured in terms of accuracy (i.e. the fraction of correctly classified examples) and the
area under the receiver operating characteristics curve (AUC). Briefly, the AUC is a value
between 0.0 and 1.0 and corresponds to the probability that a randomly selected positive
example receives a higher score than a randomly selected negative example (Fawcett, 2006).
Thus, a higher AUC corresponds to a better performance.

5.4.2 Results

Results for the individual classifiers using the minimal and maximal feature set are sum-
marized in Table 5.2. The use of the extended feature set significantly improved the
performance of the GD and EV engine with respect to the AUC (p ≈ 0.002 for both using
a paired Wilcoxon test). With respect to accuracy only the improvement observed by the
EV engine reached statistical significance (p = 0.007). Remarkably, replacement of all
missing additional features in the case of the ME engine when working with the minimal
feature set did not result in a significant loss in performance (p = 0.313 and p = 0.312
with respect to AUC and accuracy, respectively).

Correlation among classifiers

The performances of the individual classifiers were very similar. Pearson’s correlation
coefficient (r) indicated that the predicted probability of success for the training instances
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Patients Sequences VL measurements Therapies Successes Failures
EIDB 18,467 22,006 240,795 64,864 - -
Labeled Therapies 8,233 3,492 40,498 20,249 13,935 6,314
Training Set 2,389 2,722 5,444 2,722 1,822 900
Test Set 297 301 602 301 202 99

Table 5.1: Summary of the EuResist Integrated Database (version from 2007/11/27) and
training and test set. The table displays the number of patients, sequences, VL
measurements, and therapies for the complete EuResist Integrated Database
(EIDB) and the set of therapies that could be labeled with the standard datum
definition. 469 of the sequences associated with all labeled therapies belong
to historic genotypes and are not directly associated with a therapy change.
Moreover, detailed information on training set and test set (comprising labeled
therapies with an associated sequence each) is given.

Engine minimal feature set maximal feature set
AUC Accuracy AUC Accuracy

Train Test Train Test Train Test Train Test
GD 0.747 (0.027) 0.744 0.745 (0.024) 0.724 0.768 (0.025) 0.760 0.752 (0.028) 0.757
ME 0.758 (0.019) 0.745 0.748 (0.031) 0.757 0.762 (0.021) 0.742 0.754 (0.030) 0.757
EV 0.766 (0.030) 0.768 0.754 (0.031) 0.748 0.789 (0.023) 0.804 0.780 (0.032) 0.751

Table 5.2: Results for the individual classifiers on training set and test set. The table
displays the performance, measured in AUC and Accuracy, achieved by the
individual classifiers on the training set (using 10-fold cross-validation; standard
deviation in brackets) and the test set using different feature sets.

using the minimal (maximal) feature set were highly correlated (i.e. close to 1.0): GD-ME
0.812 (0.868); GD-EV 0.797 (0.786); ME-EV 0.774 (0.768). In fact, the three classifiers
agreed on the same label in 80.4% (81.7%) of the cases using the minimal (maximal) feature
set. Notably, agreement of the three classifiers on the wrong label occurred more frequently
in instances labeled as failure than in instances labeled as success (39% vs. 4% and 37%
vs. 4% using the minimal and maximal feature set, respectively; both p < 2.2×10−16 with
Fisher’s exact test).
This behavior led to further investigation of the instances labeled as failures in the

EIDB. Indeed, 145 of 350 failing instances, which were predicted to be a success by all
three engines, achieve a VL below 500 copies per ml once during the course of the therapy.
However, this reduction was not achieved during the time interval that was used in the
applied definition of therapy success. Among the remaining 550 failing cases this occurred
only 100 times. Using a Fisher’s exact test this difference was highly significant (p =
4.8 × 10−14). These results were qualitatively the same when using the maximal feature
set.

Results of combination methods

Table 5.3 summarizes the results achieved by combining the individual classifiers, and Fig-
ure 5.4 depicts the improvement in AUC on training and test set of the combination meth-



86 5 EuResist: Uniting Data for Fighting HIV

Method minimal feature set maximal feature set
AUC Accuracy AUC Accuracy

Train Test Train Test Train Test Train Test
SB 0.766 (0.030) 0.768 0.754 (0.031) 0.748 0.789 (0.023) 0.804 0.780 (0.032) 0.751
Oracle 0.914 (0.015) 0.911 0.842 (0.025) 0.844 0.917 (0.013) 0.920 0.850 (0.022) 0.860
Min 0.771 (0.020) 0.765 0.746 (0.027) 0.761 0.792 (0.021) 0.793 0.760 (0.030) 0.764
Max 0.760 (0.023) 0.765 0.742 (0.030) 0.731 0.779 (0.021) 0.779 0.757 (0.030) 0.741
Median 0.773 (0.020) 0.766 0.759 (0.027) 0.766 0.789 (0.029) 0.786 0.768 (0.029) 0.761
Mean 0.777 (0.020) 0.772 0.760 (0.024) 0.744 0.794 (0.019) 0.793 0.780 (0.028) 0.781
Majority 0.683 (0.023) 0.660 0.759 (0.027) 0.738 0.697 (0.027) 0.683 0.768 (0.029) 0.761
QDA 0.771 (0.020) 0.763 0.755 (0.031) 0.738 0.790 (0.022) 0.794 0.769 (0.027) 0.764
LR 0.778 (0.021) 0.774 0.762 (0.028) 0.744 0.798 (0.020) 0.805 0.781 (0.030) 0.771
DTrees 0.718 (0.044) 0.741 0.748 (0.032) 0.757 0.722 (0.033) 0.678 0.777 (0.032) 0.757
NB 0.732 (0.027) 0.740 0.759 (0.027) 0.738 0.752 (0.028) 0.753 0.768 (0.029) 0.761
DT 0.777 (0.021) 0.774 0.755 (0.027) 0.754 0.796 (0.019) 0.797 0.766 (0.026) 0.767
D-S 0.777 (0.021) 0.772 0.755 (0.024) 0.754 0.796 (0.019) 0.796 0.767 (0.026) 0.764
Cluster 0.775 (0.019) 0.773 0.758 (0.029) 0.741 0.797 (0.018) 0.800 0.783 (0.028) 0.784
LA 0.777 (0.020) 0.771 0.761 (0.025) 0.741 0.795 (0.019) 0.791 0.781 (0.029) 0.777
Feature 0.750 (0.026) 0.747 0.745 (0.029) 0.751 0.786 (0.021) 0.779 0.780 (0.029) 0.767

Table 5.3: Results for the combined classifiers on training and test set. The table summa-
rizes the results achieved by the different combination approaches on the train-
ing set (10-fold cross-validation; standard deviation in brackets) and the test
set. The reference methods are Single Best (SB) and Oracle, the non-trainable
combiners are named according to their function, the meta-classifiers according
to the statistical learning methods, logistic regression, decision trees, and Naïve
Bayes are abbreviated by LR, DTrees, and NB, respectively. Decision Templates
(DT), Dampster-Shafer (D-S), Clustering (Cluster) and Local Accuracy (LA)
are the methods described in detail in Section 5.3. Feature is the combination
on the feature level.

ods compared to the single best and single worst classifier, respectively. Most combination
methods improved performance significantly over the single worst classifier. However, only
the oracle could establish a significant improvement over the single best classifier. Overall,
performances of the combination approaches were quite similar. Of note, the pessimistic
min combiner yielded better performance than the optimistic max combiner. Among the
non-trainable approaches tested, the mean combiner yielded the best performance. The
logistic regression was the best performing meta-classifier. In fact, the logistic regression
can be regarded as a weighted mean, with the weights depending on the individual classi-
fier’s accuracy, and the correlation between classifiers. Moreover, using all features of the
individual classifiers as input to a single logistic regression did not improve over the single
best approach.

Figure 5.5 shows the learning curves for the three individual classifiers, the mean com-
biner, and the combiner on the feature level. The curves depict the mean AUC (after 10
repetitions) on the test set achieved with varying sizes of the training set (25, 50, 100, 200,
400, 800, 1600, 2722). In every repetition the training samples were randomly selected
from the complete set of training instances. The mean combiner appeared to learn faster
and significantly outperformed the single best engine with a training set size of 200 samples
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Figure 5.4: Improvement in AUC of combination methods compared to the single best and
single worst classifiers. The figure displays the improvement in AUC of all com-
bination methods over the single best (blue bars) and single worst (red bars)
classifiers on the training set (upper panel) and the test set (lower panel). Sig-
nificance of the improvement on the training set was computed with a one-sided
paired Wilcoxon test. Solidly colored bars indicate significant improvements
(at a 0.05 p-value threshold), as opposed to lightly shaded bars for insignificant
improvements. On the test set no p-values could be computed.

(p ≈ 0.010 with a paired one-sided Wilcoxon test). The improvement remained significant
up to a training set size of 1,600 samples (p ≈ 0.002). The combination on feature level
was significantly worse (p ≈ 0.002) than the worst single approach for all training set sizes
(except for complete set).
Finally, Figure 5.6 depicts the ROC curves of the three individual engines and the

combined engine (mean) using both feature sets on the test set. The results are compared
to a Stanford HIVdb based GSS prediction (for details see e.g. Section 4.3). The Stanford
HIVdb service did not support the rarely used drug ddC. Consequently, the four instances
in the test set containing ddC were excluded. Moreover, Stanford HIVdb did not provide
prediction results for two sequences. Thus, the reported AUC values (in parentheses in the
figure legend) differ slightly from the values reported in Tables 5.2 and 5.3 as only 295 of
the 301 test instances were used for generating the figure.

Impact of Ambiguous Failures

In order to further study the impact of ambiguous failures (i.e. instances labeled as failure
but achieving a VL below 500 cp per ml once during the course of treatment) on the
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Figure 5.5: Learning curves for the individual classifiers, the mean combiner, and the com-
bination on feature level. The figure shows the development of the mean AUC
on the test set depending on the amount of available training data for the indi-
vidual classifiers, the mean combiner, and the combination on the feature level
using the minimal feature set. Error bars indicate the standard deviation on
10 repetitions.

performance of the individual classifiers and the combination by mean or on the feature
level, they were removed from the training set, the test set, or both sets. After removal the
classifiers were retrained and tested on the resulting new training and test set, respectively.
The results in Table 5.4 suggest that training with the ambiguous failures does not impact
the classification performance (columns “none” vs. “only train”, and columns “only test”
vs. “both”). However, the ambiguous cases have great impact on the assessed performance.
Removal of these cases increases the resulting AUC by 0.05.

However, there might still be an influence of these ambiguous failures on the performance
of the trainable combination methods. For verification we removed these cases whenever
performance measures were computed (also in 10-fold cross-validation) and trained a se-
lection of the combination methods on the complete training data and on the cleaned
(i.e. without ambiguous failures) training data. The results in Table 5.5 suggest that the
trainable combination methods were not biased by the ambiguous failures.

A possibility for circumventing the need for dichotomization of virological response is
the prediction of change in VL between the baseline value and the measurement taken
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Figure 5.6: ROC curves for the prediction engines on the test data. The left (right) plot
depicts ROC curves for the individual prediction engines and the combination
using the mean combiner when working with the minimal (maximal) feature
set. Results are compared to the performance of the Stanford HIVdb based
genotypic susceptibility score.

at the follow-up time point. Logistic regression was replaced by linear regression in the
individual classifiers for predicting the change in VL. Using the maximal feature set the
GD (ME, EV) engine achieved a correlation (r) of 0.658±0.023 (0.664±0.023, 0.679±0.020)
on the training set (Rosen-Zvi et al., 2008). The mean combiner yielded a correlation of
0.691±0.019. However, the oracle achieved r = 0.834±0.012. Although small, the difference
between EV and the mean prediction reached statistical significance (p ≈ 0.005) using a
one-sided paired Wilcoxon test. Results on the test set were qualitatively the same: GD
(ME, EV) reached a correlation of 0.657 (0.642, 0.678) and the mean combiner (oracle)
reached 0.681 (0.814).

5.4.3 Discussion

The performance of the methods considered for combining the individual classifiers im-
proved only little over the single best method on both sets of available features. It turns
out that the simple non-trainable methods perform quite well, especially the mean com-
biner. This phenomenon has been previously discussed in literature (Kuncheva et al.,
2001; Liu and Yuan, 2001). Here we focused on finding the best combination strategy
for a particular task. The advantage of the mean combiner is that it does not require an
additional training step (and therefore no additional data), although it ranges among the
best methods studied. Moreover, this combination strategy is easy to explain to end-users
of the prediction system.
The learning curves in Figure 5.5 show that the mean combiner learns faster (gives

more reliable predictions with fewer training data) than the individual prediction systems.
Moreover, the curves show that the combined performance is not dominated by the single
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Engine minimal feature set maximal feature set
ambiguous instances removed from ambiguous instances removed from

none only Train only Test both none only Train only Test both
GD 0.744 0.738 0.784 0.786 0.760 0.747 0.808 0.806
ME 0.745 0.739 0.770 0.771 0.742 0.757 0.808 0.810
EV 0.768 0.776 0.811 0.824 0.804 0.812 0.846 0.855
Mean 0.772 0.767 0.812 0.814 0.793 0.791 0.849 0.849
Feature 0.747 0.754 0.797 0.808 0.779 0.787 0.832 0.842

Table 5.4: Results on the (un)cleaned test set when individual classifiers are trained on
the (un)cleaned training set. The table summarizes the results, measured in
AUC for the individual classifiers, the mean combiner, and the combination
of feature level when retrained on the (un)cleaned training set and tested on
the (un)cleaned test set. Cleaned refers to the removal of ambiguous failing
instances.

best approach as the results on the full training set might suggest. Furthermore, the
learning curve for the combination on the feature level indicates that more training data is
needed to achieve full performance. In general, combining the three individual approaches
leads to a reduction of the standard deviation for almost all combination methods. This
suggests a more robust behavior of the combined system.
In the cases of failing regimens, all three classifiers very frequently agree upon the wrong

label, precisely in 350 of 900 (39%) failing regimens in the training data using the minimal
feature set. There are two possible scenarios why the VL drop below 500 copies per ml
did not take place during the observed time interval despite the concordant prediction of
success by all the three engines:

1. Resistance against one or more antiretroviral agents is not visible in the available
baseline genotype but stored in the viral population and rapidly selected, which
would lead to an initial decrease in VL shortly after therapy switch, and a subsequent
rapid increase before the target time frame (Figure 5.7 (b) lower right).

2. The patient/virus is heavily pretreated and therefore takes longer to respond to the
changed regimen, or the patient is not completely adherent to the regimen, both
cases lead to a delayed reduction in VL after the observed time frame (Figure 5.7 (b)
lower left).

Figure 5.7 (a) shows the distribution of predicted success provided by the mean combiner
using the minimal feature set. There is a clear peak around 0.8 for instances labeled
as success whereas the predictions for the failing cases seem to be uniformly distributed.
Interestingly, the distribution of the failing cases with a VL below 500 copies per ml
resembles more the distribution for success than for failure.
The approach to predicting the change in VL exhibited moderate performance. In gen-

eral, the task of predicting change in VL is harder, since many host factors, which are not
available to the prediction engines, contribute to the effective change in individual patients.
However, guidelines for treating HIV patients recommend a complete suppression of the
virus below the limit of detection (Hammer et al., 2008). Thus, dichotomizing the outcome
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Method minimal feature set maximal feature set
Train Test Train Test

removed from test only
Single Best 0.809 (0.021) 0.811 0.839 (0.017) 0.847
Oracle 0.935 (0.012) 0.936 0.945 (0.014) 0.950
Min 0.817 (0.019) 0.807 0.847 (0.022) 0.848
Max 0.807 (0.024) 0.810 0.832 (0.018) 0.824
Median 0.820 (0.020) 0.810 0.844 (0.021) 0.835
Mean 0.823 (0.019) 0.816 0.850 (0.019) 0.847
Logistic Regression 0.824 (0.019) 0.816 0.852 (0.017) 0.856
Decision Templates 0.823 (0.018) 0.818 0.851 (0.019) 0.850
Clustering 0.822 (0.020) 0.808 0.852 (0.017) 0.850
Local Accuracy 0.823 (0.019) 0.813 0.850 (0.019) 0.844

removed from train and test
Logistic Regression 0.825 (0.019) 0.816 0.852 (0.017) 0.856
Decision Templates 0.823 (0.018) 0.818 0.851 (0.019) 0.850
Clustering 0.822 (0.021) 0.796 0.852 (0.017) 0.844
Local Accuracy 0.823 (0.019) 0.813 0.850 (0.019) 0.843

Table 5.5: AUC for the combined engines on training set and test set with the ambiguous
cases removed from test set and training set or test set only. The table displays
the results, measured in AUC, on training set (10-fold cross-validation; standard
deviation in brackets) and test set for a selection of combination approaches
when trained on the (un)cleaned training set. For computation of the AUC the
ambiguous cases were always removed.

and instead solving the classification task is an adequate solution, since classifiers can be
used for computing the probability of achieving complete suppression.

5.4.4 Conclusion

The use of the maximal feature set consistently outperformed that of the minimal feature
set in the combined system. Among the studied combination approaches the logistic re-
gression performed best, although not significantly better than the mean of the individual
classifications. The mean is a simple and effective combination method for this scenario.
Variations in the size of the training set showed that a system combining the individual
classifiers by the mean achieves better performance with fewer training samples than the
individual classifiers themselves or a logistic regression using all the features of the in-
dividual classifiers. This and the consistent reduction of the standard deviation of the
performance measures lead to the conclusion that the mean combiner is more robust than
the individual classifiers, although the performance is not always significantly improved.
Moreover, the mean is a combination strategy that is easily explainable to the end-users
of the system.
In this study we discovered ambiguous failures. These therapies are classified as failure

but have a VL measurement below 500 copies per ml. Although these instances did sig-
nificantly influence neither the learning of the individual classifiers nor the learning of the
combination method, they lead to an underestimation of the performance. This suggests
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(a) Distribution of predicted success prob-
abilities

(b) Different viral load trajectories

Figure 5.7: (a) Distribution of the predicted success for all successful therapies (blue solid),
all failing therapies (red solid), failing therapies with at least one VL measure
below 500 during the regimen (red dashed), and failing therapies with all VL
measures above 500 (red dotted) of the mean combiner using the minimal
feature set. (b) Different viral load trajectories. The top row depicts a clear
success (left) and a clear failure (right). The bottom row depicts trajectories
that are labeled as failures because the VL closest to eight weeks of treatment
exceeds the limit of detection (horizontal line). Those cases are nevertheless
often predicted as success.

that clinically relevant adjustments of the definition of success and failure can result in
increased accuracy of the combined engine.
The training and test data comprise patients with very differing level of pre-treatment,

i.e. from therapy-naïve patients to patients receiving their 15th antiretroviral regimen.
Hence, it is of interest how the engine performs for those patients. Figure 5.8 a) depicts
the performance of the EV engine for different groups of patients measured by 10-fold
cross-validation on the training set (EuResist release from 2008/10/10). The accuracy
is the highest for naïve patients, and interestingly, the AUC is the lowest for this group.
The low AUC can be explained by the fact that all patients in that group receive high
predicted success probabilities, and a substantial fraction of the few failing regimens might
be indeed ambiguous failures. Nevertheless, the AUC rapidly increases and reaches 0.84
for the group with the highest level of pre-treatment. The accuracy, on the other hand,
decreases from the initial 0.82 and stabilizes at 0.75. Again, usage of the maximal feature
set shows a better performance in all groups (except for naïve patients).
An older version of the EuResist engine (trained on release from 2007/08/29) was

compared to the opinion of 12 international HIV treatment experts (who were allowed to
use any available interpretation algorithm) on 25 cases from the test set. Only ten experts
handed in all their predictions and were therefore considered. The result of this Engine vs.
Experts (EVE) study is shown in Figure 5.8 b). It turned out that the prediction engine
performed as accurately as the best expert (expert 8). Moreover, the EuResist prediction



5.4 Predictive Performance of the EuResist Prediction Engine 93

0 1−2 3−5 6−9 10+

# 
in

st
an

ce
s

0
20

40
60

80
10

0
12

0
14

0

●

●

● ●

●

●

●

● ●

●

●

●

● ● ●

0.
5

0.
6

0.
7

0.
8

0.
9

1
A

U
C

 / 
ac

cu
ra

cy

# pretreatments

success
failure

● AUC
accuracy

●

●

● ●

●

●

●

● ●

●
●

●
●

●
●

(a) Group-wise Performance

ca
se

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

ou
tc

om
e

E
uR

es
is

t

ex
pe

rt
 8

ex
pe

rt
 4

ex
pe

rt
 6

ex
pe

rt
 1

0

ex
pe

rt
 1

ex
pe

rt
 5

ex
pe

rt
 2

ex
pe

rt
 3

ex
pe

rt
 7

ex
pe

rt
 9

co
ns

en
su

s
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Figure 5.8: Performance of the EV engine with respect to pre-treatment level (a). Bars
denote the mean number of samples in the group. Green (red) denotes the
mean number of successful (failing) therapies in the group. Performance is
measured in AUC (solid line) and accuracy (dashed line) using the minimal
(black) and maximal (blue) feature set. Result of the EVE study (b). Every
row corresponds to one case, and the columns denote the true outcome of the
treatment, the EuResist prediction, predictions by the 10 experts, and the
consensus of the expert predictions. Green relates to (predicted) success and
red to (predicted) failure.
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engine provides only six wrong predictions, and interestingly, the decision profile of the
prediction engine is very similar to the consensus decision of all ten experts, which makes
also six mistakes.

5.5 The EURESIST Web Service

The prediction engines developed by the three institutes are hosted on servers within these
institutes. Every institute is running a SOAP (once defined as: simple object access proto-
col) server. A SOAP protocol defines which data and in which format may be exchanged
between a client and a server. In essence, SOAP is the successor of XML-RPC. The spec-
ifications are usually written down in a WSDL (web service description language) file.
Modern programming languages support the construction of SOAP clients and servers on
the basis of the WSDL files.
Each engine has its own endpoint that conveniently provides the required WSDL file

upon request (i.e. by adding “?wsdl” to the endpoint of the engine): EV engine2, GD
engine3, and ME engine4. Thus, once the endpoint of an engine is known, virtually everyone
can build a SOAP client to send valid queries to the server. The structure of the SOAP
services selected in the EuResist project allows every institution to implement the service
in a preferred programming language. Moreover, the use of SOAP services allows for a
variety of tools: web sites, stand-alone programs, or integration into existing programs
for management of clinical data. If preferred, then only a subset of the engines can be
queried as well. All the different clients accessing the array of prediction engines can be
implemented without any adaptation of the underlying SOAP servers.
Indeed, the EuResist prediction engine was integrated into InfCare HIV (http://www.

infcare.se), a Swedish management tool for HIV data.

5.5.1 Implementation of the EV Engine

The SOAP server of the EV engine is written in PHP. Functions that are specific to the EV
engine – especially the computation of the genetic barrier to drug resistance – are implement
in C++ and made available to PHP via a PHP extension. The original computation of
the genetic barrier to drug resistance was rather slow, mainly due to the requirement of
computing all transition probabilities in the mixture of mutagenetic trees. The speed up
was achieved by precomputing all possible values of the genetic barrier offline. This was
possible since the mixture of mutagenetic trees perceive the virus only as a binary pattern
of length l, with l being the number of predefined events (Section 4.1.2). Thus, there is
only a finite set of possible values the genetic barrier can take. This workaround facilitates
fast response times of the web service.

5.5.2 EURESIST web tool

The most visible portal for accessing the EuResist prediction engine is the dedicated web
site (http://engine.euresist.org), which was created by one of the EuResist partners.

2http://euresist.bioinf.mpi-inf.mpg.de/prediction/?wsdl
3http://srv-peres.haifa.il.ibm.com:9080/EuResistIbmWeb/services/EuResistIBMEngine?wsdl
4http://www.informadoc.net/euresistibmserviceinterfaces.asmx?wsdl

http://www.infcare.se
http://www.infcare.se
http://engine.euresist.org
http://euresist.bioinf.mpi-inf.mpg.de/prediction/?wsdl
http://srv-peres.haifa.il.ibm.com:9080/EuResistIbmWeb/services/EuResistIBMEngine?wsdl
http://www.informadoc.net/euresistibmserviceinterfaces.asmx?wsdl
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The web site is responsible for collecting the data that is sent to the array of prediction
engines. Figure 5.9 displays the data input page of the web site. Mandatory information
for a successful request is the HIV sequence comprising protease and reverse transcriptase.
If no further information is provided, then the sequence is aligned to a consensus sequence;
the list of mutations along with a predefined list of putative treatments is sent to the three
individual engines. The user can also provide optional information that is available on
the patient: the number of previous treatment lines, previously taken antiretroviral drugs,
VL, CD4+ T cell counts, and demographic data (gender, age, mode of HIV transmission).
Like in g2p-THEO, the user can influence the list of putative treatments by excluding
drugs from being part of any treatment. The three engines predict response to each of the
treatments on the provided list and send their results back to the web site.
After receiving predictions for all putative treatments, the web site generates and displays

a top 10 list of combination treatments (Figure 5.10). Unlike in g2p-THEO, the ranking
is not only based on the mean predicted success but also on the range of the predictions.
Precisely, the ranking criterion is:

(mean_of_predictions)× (1− range_of_predictions
α

),

with α = 1.3. The user can then interactively reorder the top 10 list with respect to success
rate or range of the predictions only. Moreover, for drugs that are currently not supported
by the EuResist prediction engine, the web site queries Stanford’s HIVdb and provides
the result. The prediction results are followed by a summary of the data that was provided
to the engines and an analysis of the mutations, e.g. whether they are known resistance
mutations or not. At the top right of the results page the user can click on “Request
detail”. The resulting page (Figure 5.11) states which engines were contacted and whether
the request was successful.

5.6 Towards Prediction of Sustained Response

Currently, as many other tools, the EuResist prediction engine focuses on predicting ini-
tial virological response, i.e. reduction of VL within 4-12 weeks of treatment. However,
clinicians are also interested in the response to the selected treatment beyond this short
period. Thus, performance of the EuResist prediction engine of inferring sustained re-
sponse has to be properly assessed. For this analysis, sustained response is measured at
16-32 weeks of treatment. Sustained response data were extracted from the EuResist
integrated database comprising data from Italy, Sweden, Germany, and Luxembourg (i.e.
version from 2007/11/27).

5.6.1 Material and Methods

Data

The data for this study were extracted according to the standard datum definition pre-
sented in Section 5.1. For the comparison we used the originally employed definition that
focuses on initial response without changes, i.e. response measured at 8 (±4) weeks of
treatment, and a modified version with sustained response measured at 24 (±8) weeks of
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Figure 5.9: Data input page of the EuResist prediction engine. The form contains fields
for pasting a HIV sequence comprising protease and reverse transcriptase. Al-
ternatively, the sequence can be uploaded as fasta or mutation can be selected
from a drop-down menu. In the field below one can select the drugs that should
be considered when ranking different regimens. The remaining fields ask for
additional data, e.g. number past treatment lines and previously used drugs.
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Figure 5.10: Results page of the EuResist prediction engine.
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Figure 5.11: Details of the request. The page summarizes how long did the generation of
the result took and which SOAP servers were queried.

treatment. In both cases a success was defined as a drop of viral load below 500 copies
per ml or, alternatively, a 100-fold reduction compared to the baseline value. 3,023 treat-
ments met these requirements for initial response and 2,722 (301) were used for training
(testing) the EuResist prediction engine as described in the previous section (short-term
dataset). A comparable number of 2,778 treatments met the requirements for sustained
response (long-term dataset). For avoiding over optimistic estimation of the prediction
performance, the instances in the long-term dataset were grouped depending on whether
they were also present in the short-term dataset. Precisely, dataset A comprised 1,837
treatments of the short-term training set for which a classification with respect to long-
term response was available (1,540 of those share the same label). Dataset B comprised all
742 treatments for which only a long-term label was available. And dataset C comprised
199 treatments from the short-term test set for which also a long-term label was available
(167 of them have the same label). Treatments in dataset A and B contributed to the
training set for a long-term prediction model, while dataset C was used as an independent
test set. Changes of the label from success at initial response to failure at sustained re-
sponse were with 142 (17) as frequent as changes from failure to success with 155 (15) in
dataset A (C).

Comparative Analysis

The EuResist prediction engine was used to predict the response to antiretroviral therapy
for all treatments in datasets B and C. In order to rate the achieved prediction performance
correctly, the results were compared to a long-term prediction engine. This engine was
trained from scratch (i.e. feature selection and statistical learning) for this task solely
on data from datasets A and B. The resulting model was used to predict the sustained
response for all treatments in dataset C. Predictions by this model for treatments in dataset
B were obtained in a cross-validation like procedure that will be explained in the following
paragraph.
The training procedure for the sustained prediction model was as follows. Training data

for the long-term model comprised datasets A and B. Precisely, dataset B was split into 10
equally sized subsets, and dataset A plus nine of the subsets from dataset B were used as
training set. The remaining subsets from dataset B operated as a test set. This procedure
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was repeated 10 times. Hence, every subset of dataset B was used as a test set once.
Therefore, results can be compared to the predictions given by the short-term model for
instances in dataset B. The final long-term model was trained using the complete data
from datasets A and B. And response to treatments in dataset C was predicted and results
compared to the short-term predictions of dataset C. Due to unavailability of predictions
of the GD engine for dataset B, only the ME and EV engines were used for the comparison
on dataset B. Results on dataset C include the predictions made by all three engines.

As described in Section 5.2, logistic regression was the only statistical learning method
for all engines. Again, the three predictions provided by the individual engines were com-
bined using the mean. Performance was measured in AUC (area under the ROC curve).
Statistical significance was computed using a Wilcoxon test for testing whether the two
areas under the ROC curve are different.

All experiments were carried out using both, the minimal feature set and the maximal
feature set. Results on dataset C were also compared to a GSS prediction based on the
Stanford HIVdb (for details see e.g. Section 4.3). In addition to the sustained outcome of
the treatment, the initial response for the instances in dataset C was available. Thus, on
dataset C performance of the all models is assessed with respect to both time points.

5.6.2 Results

Figures 5.12 (a) and (b) show the ROC curves on dataset B. Briefly, the short-term model
achieved an AUC on dataset B of 0.799±0.029 (0.823±0.05) compared to 0.799±0.05
(0.846±0.055) achieved by the long-term model using the minimal (maximal) feature set.
In both cases the difference was not significant (p=0.99). When using the maximal feature
set, however, the performance difference between the two models was more pronounced
in favor of the long-term prediction engine. Results were qualitatively the same on the
independent test set C. The short-term model achieved an AUC of 0.757 (0.799) com-
pared to 0.77 (0.81) achieved by the long-term model using the minimal (maximal) feature
set. Figures 5.13 (a) and (b) show the corresponding ROC curves. Here the long-term
model is better when predicting sustained response and the short-term model is better
when studying initial response. The performance of HIVdb was better for predicting sus-
tained response than initial response. In general HIVdb performed worse than either of
the prediction models.

5.6.3 Discussion

In this analysis we showed that the EuResist prediction engine predicted long-term re-
sponse as well as short-term response. This fact has been demonstrated previously for
rules-based prediction systems (Zazzi et al., 2009). Moreover, the EuResist prediction
engine performs as well as a system trained for predicting long-term response. A likely
explanation is that in many cases the short-term response and long-term response share
the same label (≈ 82% in dataset A and C). Interestingly, the performance for all tested
systems increased when studying the sustained response.
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Figure 5.12: ROC curves for dataset B. Curves were generated using the minimal (a) and
maximal (b) feature set, respectively, with whiskers indicating the standard
deviation, for the initial response model (short) and the sustained response
model (long).

5.7 Effect of Modified TCE Definitions

The results in Section 5.3 indicated that the standard datum definition is suitable but
has serious drawbacks, the main one being that treatments are labeled as failures albeit
the fact that the VL is sufficiently reduced during course of the treatment. As discussed,
the factors leading to a delayed response, e.g. suboptimal adherence, usually cannot be
inferred from the viral genotype. Luckily, the suboptimal labeling does not have a great
impact on the learned statistical models but only on assessed performance leading to an
underestimation of the usefulness of the tool in clinical practice (Section 5.3). Likewise,
factors that lead to an initial response but a virological failure only a few weeks later may
not be found in the viral genotype as well, for example, decreased adherence of the patient
(after improved health conditions due to initial response or due to the appearance of side-
effects), archived drug resistance mutations that are not visible in the baseline genotype,
rapid development of drug resistance.

An improved standard datum definition could consult multiple VL measurements before
labeling a treatment as success or failure. The problem with relying on multiple measure-
ments at specific time points is the expected decrease of training samples. For instance,
only about 2000 of the 3000 standard datum instances used in the previous section have
also a VL available in the four months window around 24 weeks of treatment.

Here we introduce two modified standard datum definitions that use multiple time points
of VL measurement for dichotomizing virological response to success and failure.
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Figure 5.13: ROC curves for the independent test set C. Here both outcomes, initial re-
sponse (dashed lines) and sustained response (solid lines) are studied for the
short-term model (short) and the sustained response model (long). The per-
formance is compared to the performance of Stanford HIVdb (hivdb).

5.7.1 Material and Methods

Alternative Standard Datum Definition

The basic idea behind the first modified standard datum definition is to extract from the
database instances with initial and instances with sustained response separately. If there
are instances that receive a label for both time points, then those with discordant labels
are removed from the final dataset. For this study we use the most recent version of the
EuResist integrated database (2008/10/10). The database gives rise to 5001 and 4456
instances for initial and sustained response, respectively. 3504 instances received a label
for both time points; 2959 of those instances received the same label. This initial data is
augmented by instances that only received a label for initial response (n=1497) or only for
sustained response (n=952). The resulting dataset comprises 5408 treatment switches of
which 10% are randomly assigned to a test set (n=541). The success rate was 0.747 and
0.756 in the training and test set, respectively. This definition is termed TEP (for: two
end points).
The second modified standard datum definition examines the area under the log10(VL)

curve after treatment start as basis for the labeling. Here, all available VL measurements
between treatment start and at 24 (±8) weeks are used to compute the area under the
log10(VL) curve. By definition, at least two VL measurements are required, the time
point of the first measurement is set to treatment start, and the time point of the last
measurement is set to 24 weeks. The minimum expected area under the VL curve is
168× log10(50) ≈ 285, corresponding to the fact that all measurements are at the level of
detection, i.e. 50 copies of viral RNA per ml blood. However, we usually apply a threshold
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Figure 5.14: Performance of the EV engine when trained and tested using the TEP def-
inition. The engine was trained with the minimal and maximal feature set.
Performance in 10-fold cross-validation (a) and on an independent test set (b).

of 500 copies per ml as the database features also values using an older, less sensitive VL
assay. Applying the 500 copies threshold leads to a cutoff for the area under the VL curve
of approximately 450. As the choice of the cutoff is not straight forward, we apply an array
of cutoffs: 400, 450, 500, 600, and 700, corresponding to an average VL of approximately
240, 477, 946, 3727, and 14677, respectively. The dataset comprises a subset of instance
from the sustained response dataset. Precisely, those instances with more than one VL
measurement during the observation period (n=4059). An independent test set is created
by randomly selecting 10% of the instances (n=406). This definition is termed AVL (for:
area under VL).

Prediction Engine

Due to practical reasons only the EV engine is trained and tested on the datasets. For
training the engine we use exactly the same features and feature selection model as de-
scribed earlier in Section 5.2. For the AVL labeling, feature selection was carried out only
once with a cutoff of 500. Performance is again assessed using the area under the receiver
operating characteristics curve.

5.7.2 Results

Using the TEP definition, the EV engine achieves an AUC of 0.818±0.028 (0.856±0.03) and
0.849 (0.856) in the 10-fold cross-validation and on the independent test set, respectively,
using the minimal (maximal) feature set. Figure 5.14 depicts the corresponding ROC
curves.
Table 5.6 lists the AUCs achieved on training and test data using the AVL labeling. The
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400 450 500 600 700

success rate
train 0.627 0.728 0.785 0.858 0.915
test 0.611 0.695 0.749 0.825 0.911

minimal
train 0.712 (0.019) 0.753 (0.028) 0.788 (0.035) 0.810 (0.032) 0.782 (0.040)
test 0.724 0.742 0.772 0.840 0.829

maximal
train 0.791 (0.023) 0.822 (0.024) 0.860 (0.021) 0.867 (0.020) 0.867 (0.036)
test 0.794 0.797 0.823 0.878 0.894

Table 5.6: Performance using the area under the log10(VL) curve for labeling. The columns
correspond to different thresholds used for dichotomizing the area into success
and failure. The first two rows state the fraction of successful treatments in
the dataset (train and test). The following rows show the performance of the
minimal and maximal feature set measured in AUC on the training and test
data.

values range from 0.712±0.019 to 0.782±0.04 in the 10-fold cross-validation when restricted
to the minimal feature set. Application of the maximal feature set leads to an increase of
around 0.07 in AUC. Moreover, the higher the selected threshold the higher the achieved
AUC.

5.7.3 Discussion

The observed performance with the TEP definition is close to the one achieved after re-
moving the ambiguous failures from the dataset in Section 5.3. This suggests that the
labeling using the modified definition is clearer. A confounding factor is obviously the
increase in data compared to the previous analysis. However, when the modified definition
was applied to an older version of the EuResist database (2007/11/27) a similar boost in
performance was observed (data not shown). Moreover, using a training set of comparable
size originating from the most recent release, with labels according to initial response only,
shows AUC values around 0.75 (see e.g. results in Section 5.8). Thus, the observed boost
in performance mainly originates from the change in the standard datum definition.
One could argue that removing the cases with discordant labels at the two time points

would only leave the “easy to predict” cases in the training and test data. In general, cases
are considered to be simple if the viral genotype shows few mutations, i.e. the patient is
not very treatment experienced. However, the number of recorded treatments prior to the
treatment switch, which is a measure of treatment experience, did not differ significantly
between the time points for initial and sustained response (p = 0.6529 computed with a
Kolmogorov-Smirnov test). Neither was the difference between initial response and the
combined response significant (p = 0.99). Thus, a differing level of treatment experience
as a source for improved prediction performance can be excluded.
In general, results obtained with the AVL definition are inferior to the ones obtained

using the TEP definition, probably owing to the fact that the AVL definition does not
exclude instances that represent unclear cases (e.g. slow decrease in VL). And indeed, if
the instances with discordant labels in initial and sustained response are excluded from the
dataset the AUC reaches 0.824±0.032 and 0.837 on training and test set, respectively, with
the minimal feature set and a cutoff of 500. However, the increase in AUC with increasing
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threshold used for the labeling indicates that the task of sorting out clear failures is not so
hard to solve. The cutoffs 600 and 700 represent treatments with an average VL of 3727
and 14677, respectively.
As long as there are known factors that significantly influence the response to treatment

and these factors cannot be included in the statistical model (for any reason) one should
select a labeling that removes (or at least reduces) the impact of these factors. One such
factor is the adherence of the patient to the prescribed treatment. Also the RDI tried to
exclude cases that are likely to be related to poor adherence. Precisely, if at baseline the
patient had a VL of less than 1000 copies per ml and the VL increased after the treatment
change by more than 300-fold (i.e. 2.5 log10 VL) then the TCE was excluded (Larder
et al., 2007). The TEP definition provided a labeling involving instances that are less
likely corrupted by incomplete adherence. However, inspection of the VL trajectories of a
patient’s past treatments could give a clue about his or her general adherence and provide
a useful covariate for predicting response to combination therapy.
There are many ways to modify the original standard datum definition, e.g. by changing

the outcome time points or considering more than two outcome time points. When modi-
fying the definition of response one has to consider not to pose too many restrictions as one
would drastically reduce the amount of available data. Moreover, and most importantly,
the definition of treatment response must be in concordance with clinical practice: only in
this case one can provide a tool that can be used in clinical routine.

5.8 Integrating Novel Drugs

The work described in this section has been presented at the 7th European HIV Drug
Resistance Workshop 2009, Stockholm, Sweden (Altmann et al., 2009c).
The beauty of purely data-driven approaches to predict either drug resistance of the virus

to single drugs or the virological response to combination therapy is that they rely solely
on data for constructing a model that solves the task. These approaches, however, require
a sufficient amount of data to solve the task with a certain reliability. Hence, the beauty of
the approach is also its major weakness, as data for newly licensed drugs are rarely available
in sufficient amounts. In the case of geno2pheno, phenotypic resistance data are required.
The data, however, demands the availability of the drug to the laboratory, and this usually
only the case after official release of the drug on the market. Moreover, once the drug
is available, the experimental data are still cost- and labor-intensive to obtain. In the
case of prediction engines that infer response to combinations of antiretroviral agents, the
databases collecting the training data have to be updated with treatments comprising the
novel compounds. Unfortunately, this process can take years, e.g. in the latest release of the
EuResist database (2008/10/10) there exist only 119 standard datum instances featuring
three novel drugs (the oldest was approved in June 2005). Owing to the problems of
update ability, the data-driven approaches are doomed to lag behind the new developments
by the pharmaceutical companies (unless they will agree to share their data on clinical
trials to facilitate updating such tools). For geno2pheno we investigated the use of
semi-supervised learning techniques for improving the prediction of HIV drug resistance
in situations with only few training samples (see Perner et al. (2009) and Section 3.3).
Unfortunately, a benefit of semi-supervised learning could not be confirmed for every drug
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class. More precisely, some model assumptions of the employed semi-supervised learning
methods could even be harmful for the classification performance of some drugs.
A solution to the update problem of prediction engines like g2p-THEO and EuResist

that is based on semi-supervised learning strategies is unlikely to be successful, simply ow-
ing to the use of drug combinations instead of single drugs as in the case of geno2pheno.
Here we investigate a strategy that aims at incorporating expert-based prediction systems,
which generally are rapidly updated following the release of a new drug, into the data
driven approach. The approach borrows ideas from language processing where discounting
is the process of replacing the original counts of events with modified counts in order to re-
distribute the probability mass from the frequently observed events to rare or even unseen
events. For example, absolute discounting removes a constant number from the counts for
all events (Ney et al., 1994).

5.8.1 Materials and Methods

Standard Encodings

From the latest release of the EuResist integrated database (2008/10/10) we extracted
4,538 standard datum instances (original definition as in Figure 5.1). These therapy
switches were used as training data for the EV engine. Response to antiretroviral treat-
ment was dichotomized to success and failure based on the 8 (±4) week follow-up viral
load (VL).
The baseline model used the minimal feature set, i.e. indicators for drugs in the regi-

men, mutations in the baseline genotype, and the genetic barrier to drug resistance. The
extended model used the maximal feature set, i.e. additionally baseline VL, indicators for
previous use of a drug, and indicators modeling previous exposure to NRTIs, NNRTIs, and
PIs. Both encodings are termed standard encodings.

ndGSS Encodings

The alternative EV engine incorporates rules-based ratings for novel drugs as additional
features. We overcome the fact that only very few real novel drugs (considered by today’s
standards) are available in the training data by treating all drugs in a regimen that were
approved by the FDA less than four years prior to treatment start as novel drugs; simply
because these drugs were real novel drugs at the time the treatment started. The genotypic
susceptibility score (GSS) for drugs that are considered novel was computed using Stan-
ford’s HIVdb (version 5.0.0; HIVdb5) and used as an additional covariate termed ndGSS
(for: novel drug GSS). This step constitutes the discounting-like part of the modeling strat-
egy, since indicators and genetic barrier for drugs contributing to ndGSS were set to 0, i.e.
with respect to the standard encoding the novel drugs were not existing in the treatment.
Table 5.7 lists the year of FDA approval for the considered drugs and the year until when
those drugs were considered novel. Moreover, the table lists in how many instances the
drugs were used and how many instances were affected by the discounting. In order to be
able to distinguish between the absence of novel drugs and all the virus being resistant to
all novel drugs (in both cases the ndGSS is 0), the ndGSS was set to -1 if all novel drugs
were classified as resistant by HIVdb5. Moreover, as novel compounds can be expected
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ZDV ddI d4T 3TC ABC TDF NVP EFV
Year FDA approval 1987 1991 1994 1995 1998 2001 1996 1998
Year until novel 1991 1995 1998 1999 2001 2003 2000 2002
Drug used in instances 1355 1085 900 3123 752 1852 395 823
# instances changed 0 0 60 133 153 413 75 243

IDV SQV NFV LPV APV ATV
Year FDA approval 1996 1995 1997 2000 1999 2003
Year until novel 1999 1999 2000 2002 2003 2004
Drug used in instances 237 245 359 1726 314 423
# instances changed 66 54 128 394 69 110

Table 5.7: Year of approval of the drugs by the FDA and year until the drugs were consid-
ered novel. The last two rows list the number of standard datum instances in
which the drugs were used, and the number of instances that were affected by
the discounting-like step.

to be more powerful drugs, we introduce a weighting factor (wf) for the ndGSS feature.
Precisely, the ndGSS feature is multiplied by the weighting factor during the prediction
process.

Performance Assessment

Performances of standard and the ndGSS encodings were compared in a 10-fold cross-
validation on the training data. In this setting we seek to investigate whether the changes
applied to the standard encoding have a serious impact on the performance with respect
to the established compounds. To this end, the folds making up the training data for the
ndGSS encoding were used as is to train the classifier, the test fold, however, comprises
the standard encoding. Thus both approaches are tested on the same encoding (i.e. the
standard encoding).
An additional 119 standard datum instances containing real new drugs (DRV n=59,

TPV n=52, ETR n=4, DRV+ETR n=4) were extracted from the EuResist database
for independently assessing performance of the ndGSS encoding. The ndGSS for these
new drugs was computed using HIVdb5 as well. Performances of the ndGSS encodings
were compared with the performance achieved by a HIVdb5-based GSS for the complete
regimen. The weighting factor was optimized by five-fold cross-validation on these 119
instances. Classification performance was assessed using the area under the ROC curve
(AUC).

5.8.2 Results

In the cross-validation setting the baseline (extended) model using the standard and
the ndGSS encoding achieved an AUC of 0.742±0.020 (0.775±0.022) and 0.735±0.027
(0.768±0.027), respectively. For comparison, HIVdb5 reached an AUC of 0.708±0.026. On
the 119 instances including real novel drugs HIVdb5 achieved an AUC of 0.545 (almost
random) while the baseline (extended) model using the ndGSS encoding yielded an AUC
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(a) Performance on training data (b) Performance on instances with real new drugs

Figure 5.15: ROC curves on training data (a) and test data containing novel drugs (b).
Whiskers indicate the standard deviation.

of 0.587 (0.636). Using the optimized weighting factor for ndGSS elevated the AUC to
0.608 (wf=8), 0.642 (wf=7), and 0.677 (wf=4) for HIVdb5, baseline, and extended model,
respectively.

5.8.3 Conclusions

The cross-validation analysis demonstrated that there was no statistical significance be-
tween the standard and the ndGSS encoding (p > 0.13 using a paired Wilcoxon test).
This indicates that the precision of the system regarding established drugs is not compro-
mised by the discounting-like approach. The baseline encoding significantly outperformed
HIVdb5 and the extended encoding significantly outperformed the baseline encoding (both:
p = 0.02).
Performance on the 119 test instances featuring real novel drugs was disastrous. However,

even the reference approach (HIVdb5) yielded a performance close to random. Both, the
baseline and the extended ndGSS models outperformed HIVdb5, i.e. they could predict
response better than the GSS alone. Thus, the modeling approach can be regarded as
a step in the right direction. Boosting the influence of the ndGSS feature elevated the
AUC of all models by approximately 0.05. This effect is probably related to the increased
potency of the novel drugs.

5.9 Therapy History: Replacement for the Genotype?

The vast majority of tools that predict response to antiretroviral therapy focus on the viral
genotype as the major source of information. Indeed, obtaining the sequence of the viral
drug targets is a standard approach for finding the best treatment for HIV patients in
developed countries. However, despite dropping prices for genome sequencing, genotyping
is not a standard practice in resource-limited settings, where even the standard VL assay
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exceeds the budget for standard care. Unfortunately, the majority of people infected with
HIV live in such resource-limited countries.

The viral drug targets are steadily responding to the ongoing treatment and each treat-
ment leaves traces in the viral genotype. In fact, the genotype obtained by bulk sequencing
may not provide all mutations that ever occurred in the viral population. Precisely, if mu-
tations do not present a replicative advantage, resistance mutations may disappear from
the currently predominant viral variant. For example, the predominant viral population
in patients having a treatment break has usually the characteristic of the wild type virus.
Unfortunately, the patient harbors previous viral variants in the form of proviral DNA
in several infected tissues. This constitutes a memory of resistance mutations provoked
by previous treatments. As a consequence, recycling of drugs leads to a rapid reselection
of previously existing resistance mutations, which are not prevalent in the predominant
viral variant. For avoiding such a short-term viral rebound, the treating clinician considers
the patient’s treatment history, i.e. the previously taken drugs, in addition to the viral
genotype when selecting a new regimen. Treatment history has long been recognized as
clinically relevant (Bratt et al., 1998). More recently it was shown that taking all available
genotypes into account improves the prediction of treatment response in heavily pretreated
patients (Zaccarelli et al., 2009). Thus, a prediction model focusing on treatment history
could be an effective alternative to a genotype-based model in resource-limited settings.

This study aimed at investigating which representation of the treatment history is the
most useful one for inferring response to combination antiretroviral therapy. And how the
predictions of an history-only engine compare to state-of-the-art predictions based on the
viral genotype. The research was part of Fabian Müller’s Bachelor Thesis (Müller, 2008)
and only the main results are summarized in the following sections.

5.9.1 Material and Methods

Data and Response Definition

For the experiments we used the 2007/08/16 release of the EuResist integrated database.
The definition of successful virological response was modified compared to the standard
datum definition for allowing to exploit the wealth of data in the database. A success was
defined if at least one VL measurement during the treatment was below 500 copies per
ml. If the lowest measurement in the database exceeded the value, then the treatment was
labeled as a treatment failure. Moreover, since we are interested in the impact of treatment
history, a baseline genotype was not required for inclusion of a treatment in the study. Of
note, the response definition used here is yet another alternative to the originally defined
standard datum definition.

The definition resulted in 35,149 treatments being labeled as success or failure, we refer
to this dataset as HO (for: history only). Of those treatment changes, a set of 3,910 could
be associated with a genotype that was obtained at most 90 days prior to treatment start.
These instances were collected in a second dataset termed WG (for: with genotype). The
HO dataset comprised 1689 distinct combinations of antiretroviral drugs.
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Features of Treatment History

The current therapy, i.e. the therapy of which the virological response has to be inferred,
was encoded using 17 binary variables each representing a single drug. This encoding was
used in previous sections and is termed no history.

The indicators for the current therapy were augmented with features derived from the
patient’s treatment history. The simplest encoding used one indicator for previous exposure
to a drug for each of the 17 compounds, hence it is denoted as binary history. A more
elaborate encoding takes into account the time since last exposure to the drug. Here the
history is not encoded as a binary variable, but as a continuous variable ranging between
0 (never exposed) to 1 (very recently exposed). Precisely, the variable was defined as

f(t, k) =

{
1− 1

4300k t
k 0 ≤ t ≤ 4300

0 else
,

where t is the time since last exposure in days (with a maximum of 4300) and k is a
parameter controlling the decay of the influence of previously used drugs. A value of 1 for
k equals linear decay, values larger (smaller) than 1 lead to a slower (faster) decay of the
influence. Due to the nature of the encoding it is called continuous history. The motivation
for this feature is that compounds that were taken a long time ago may have a reduced
impact on the current regimen.
In addition to a simple concatenation of features for the current drugs and historic use

of drugs, special interaction features were introduced aiming at modeling the interaction
between previously used drugs and drugs in the current regimen. For example, if the
current treatment does not include any protease inhibitor, the previous use of protease
inhibitors is expected to have little impact on the treatment outcome. Like in the ME
engine, second order features represent the previous use of a compound and the current
use of another drug from the same class, i.e. 49 (7×7) and 100 (10×10) additional features
model interaction between PIs and RTIs, respectively. These 149 variables extend the 17
binary variables for the current regimen. This approach was applied to the binary and
continuous history features, thus, leading to the 2nd order binary and 2nd order continuous
encodings.

Genotype Features

For correctly rating the performance of the history-only prediction within a state-of-the-
art context, we compared it to a prediction based on genotype. Precisely, we applied the
encoding used for g2p-THEO (49 binary variables representing mutations in protease and
reverse transcriptase, 17 binary indicators for the drugs in the current regimen, and 17
variables for the genetic barrier to drug resistance) and trained a classifier on the WG
dataset.

Statistical Learning

The features were tested with two statistical learning techniques: logistic regression and
random forest. The number of trees in the forest was set to 100. The parameters of
the history encoding, the cutoff in days for a compounds for being considered as part



110 5 EuResist: Uniting Data for Fighting HIV

of the history, and k, which controls the decay of the influence of previously used drugs,
were optimized in a 10-fold cross-validation setting (separately for both learning methods).
Moreover, all history encodings were compared in a 10-fold cross-validation setting on the
HO dataset. Performance of the genotype-based model was assessed in a 10-fold cross-
validation setting on the WG dataset. And for the comparison to the genotype-based
model the history-only models was trained on only those instances of HO for which no
associated genotype was available (i.e. HO without WG: 31,239), the remaining instances
were used as a test set and split into 10 equally sized folds matching the folds of the
cross-validation for the genotype-based model.
In addition to a performance comparison we also studied the best way for combining

genotype and history predictions. Here we focused on three strategies. In strategy one
we added the history features as additional covariates to the genotype encoding (concate-
nation). This approach, however, limits the data used for training to the WG dataset.
Strategy two used the prediction computed by the history-only model as an additional
covariate in the genotype encoding (prediction feature). This approach is akin to the one
used in GD engine (Section 5.2), which adds the prediction of a Bayesian network to the
list of features. The third strategy simply computed the mean of the history-only and the
genotype-based prediction (combined by mean). In the latter two approaches the history
model could be trained on all available data (i.e. HO without WG), and the genotype-based
model only on WG.
Performance is assessed as the area under the ROC curve. Significance is assessed using

a paired one-sided Wilcoxon Rank Sum test.

5.9.2 Results

The results suggested that previous use of a drug should be considered from the first day
on. Linear increase of the threshold at which drugs are considered for the history encoding
resulted in a linear decrease in AUC for both classifiers (data not shown; see Müller (2008)
instead). Moreover, the best parameter k for modeling the influence of past treatments
on the current regimen was 1 (i.e. linear decay) for both classifiers. It turned out that
values of k that are smaller than 1 impair the performance of logistic regression. The
random forest classifier was more robust with respect to the choice of k. For all further
experiments, k was set to 1 and drugs were considered from the first day on.
Table 5.8 summarizes the performance of the different history encodings obtained on the

HO dataset. Using the binary history significantly, outperformed the predictions based on
the current treatment only for both classifiers (p < 0.001). For logistic regression the best
encoding was the 2nd order binary encoding that significantly outperformed the standard
binary encoding (p < 0.001). The random forest classifier achieved the best results with
the continuous encoding, which also significantly outperformed the binary one (p < 0.02).
The use of second order features seriously impaired the performance of random forest,
which performed significantly worse than their standard counterparts (p < 0.001). The
random forest classifier performs in general better than the logistic regression. However,
the initial difference of 0.03 in AUC (no history) could be reduced to 0.008 using the best
performing history features for both approaches.
Table 5.9 shows the performance of the best history encoding and the genotype-based
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logistic regression random forest
no history 0.670 (0.011) 0.700 (0.008)
binary 0.713 (0.008) 0.729 (0.007)
continuous 0.714 (0.009) 0.734 (0.008)
2nd order binary 0.726 (0.008) 0.720 (0.007)
2nd order continuous 0.707 (0.011) 0.727 (0.007)

Table 5.8: Mean 10-fold cross-validation performance in AUC on the HO dataset. Standard
deviation is given in parenthesis.

logistic regression random forest
history-only 0.722 (0.027) 0.746 (0.023)
genotype-based 0.766 (0.025) 0.771 (0.022)
concatenation 0.778 (0.025) 0.793 (0.018)
prediction feature 0.781 (0.024) 0.787 (0.020)
combined by mean 0.780 (0.025) 0.794 (0.022)

Table 5.9: Mean 10-fold cross-validation performance on the dataset WG achieved by the
best performing history-only models and the genotype based prediction and the
three combination approaches. Standard deviation is given in parenthesis.

predictor on the WG dataset. The genotype based prediction clearly outperformed the
history-only predictions for both classifiers (p < 0.002). Again, the random forest classifier
performs better than the logistic regression. Using the genotype features, however, the
difference is only marginal – an effect that we observed before with g2p-THEO (Chap-
ter 4). All three ways for combining the history information and the genotype information
significantly outperformed the genotype alone (p = 0.032 for the smallest improvement:
logistic regression and concatenation). None of the improvements among the different ways
of combination achieved statistical significance.

5.9.3 Discussion

The study showed that prediction of treatment response based on the current regimen
and the genotype of the virus only can significantly be improved by including information
on the patient’s treatment history. Moreover, recoding the exposure to a previously used
drugs from the first day on provided the best results. We explored further features derived
from the patient’s treatment history, among those were similarities of the current therapy
to the preceding regimen, but none of the other encodings could improve the performance
over the results presented here (Müller, 2008).
A possible confounder of the analysis was the fact that the treatment history was likely

to be incomplete for a large number of patients. However, repeating the analysis with
a dataset comprising only patients with their treatment history completely recorded in
the database, which resulted in a dataset with 17,720 treatment changes, led to the same
results. The AUC for all encodings of the history (including no history) were about 0.03
higher then the results in Table 5.8 (data not shown).
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In our study, the history-based prediction is clearly inferior to the genotype-based pre-
diction. Recently, other studies presented results where the difference between a genotype-
based and a treatment history-based prediction were much less pronounced (Prosperi et al.,
2009a; Revell et al., 2009). A potential cause for the discrepancy could be that the latter
two studies aimed at predicting virological response at a fixed time point and additionally
allowed the use of baseline VL as an additional covariate. In both studies, which ap-
plied random forests as a statistical learning method, baseline VL was ranked as the most
important feature. However, due to a known bias of the random forest to rate continu-
ous or categorical variables higher than variables with few categories – especially binary
ones (Strobl et al., 2007), the impact of VL should be reassessed. The baseline VL might
nevertheless be a good predictor for response to combination therapy, its application in
resource-limited settings, however, remains doubtful; owing to the high cost of the viral
load assay. Fiscus et al. (2006) investigate alternatives of the established VL assay that
can be used in regions with limited resources where response to antiretroviral treatment is
still typically monitored using the CD4+ T cell counts.

In an ongoing work Saigo et al. (in preparation) use a tailored machine learning approach
based on subsequence mining (Nowozin et al., 2007) that tries to exploit the order in which
drugs were applied in the patient’s history. Here the value of genotypic information over
treatment history alone could be confirmed using the original standard datum as response
definition. Moreover, interpretation of the model revealed that the information about
initial response (success or failure) of treatments in the past plays an important role.
To conclude, the study demonstrated that response to treatment can be predicted with

good performance based on treatment history alone. The best representation of the treat-
ment history was different for the two evaluated statistical learning methods. Such history-
based models might be an option for resource-limited settings and are currently subject
of further investigations (Prosperi et al., 2009a; Revell et al., 2009), and (Saigo et al., in
preparation). Such models will certainly be useful as soon as the multitude of antiretroviral
drugs is also available in resource-limited settings. So far, the WHO addressed the inability
to provide personalized HIV treatment to those patients by issuing simplified treatment
protocols that cover first- and second-line treatment (Gilks et al., 2006).
It still remains a question whether the performances of the history-based models assessed

on databases reflecting the pandemic in the developed countries can be transferred to the
situation in resource-limited settings; with the majority of viruses originating from other
subtypes than B. Moreover, the performance of the history-based models is assessed on
treatment change decisions that are usually genotype-based, either on a baseline genotype
or a historic genotype. Thus, the genotypic information is implicitly contained in the drug
combination that the model is asked to assess and therefore may lead to an overestimated
performance in the comparison to genotype based methods. Therefore, either prospective
studies or retrospective analyses on treatment changes that were not based on genotypes
are required to assess the usefulness of history-only-based prediction models.
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In the previous chapters we demonstrated that predicting virological response to combina-
tion antiretroviral therapy is a feasible task. The resulting models, however, focus solely
on the efficacy of a regimen, which is only one aspect of a putative treatment the clini-
cian has to assess. The other side requiring consideration is the effect of the regimen on
the virus (or the whole viral population); specifically, which mutations will the regimen
provoke and how will these mutations affect the efficacy of future treatments. Patients
infected with HIV cannot be cured currently since the virus integrates its DNA into the
genome of the host cell, thus making a life-long therapy a necessity. For ensuring the best
use of the currently available panel of antiretroviral drugs it is essential to apply them in
an order that avoids or at least minimizes cross-resistance effects and exploits potential
resensitization effects.
Jiang et al. (2003) introduced the notion of future drug options (FDO) based on resis-

tance of the virus against single drugs and complete drug classes as assessed by a rules-
based interpretation algorithm. The FDO measure was applied to data from the clinical
trial ACTG 364 (Katzenstein et al., 2003) conducted by the AIDS clinical trial group
(ACTG) and focused on assessing the impact of baseline phenotypic resistance on treat-
ment length. The trail comprised mainly treatments with two NRTIs and the PI NFV
and/or the NNRTI EFV. Difference in the FDO between the viral genotype before treat-
ment start and at virological failure was studied for determining the most effective regimen
in terms of resistance cost. When corrected with respect to the time to virological failure,
EFV based treatments exhibit a higher resistance cost than NFV or NFV+EFV based
regimens. The study clearly demonstrates the use of the FDO concept for devising general
treatment guidelines. For using this approach to develop a personalized treatment plan,
however, one has to compare the current predominant viral population in the patient to
the makeup of that population at failure of the possible regimens.
Various approaches have been undertaken to stochastically simulate the evolution of

the viral population during treatment, for examples see Deforche et al. (2008); Prosperi
et al. (2009b); Perelson (2002); Ribeiro and Bonhoeffer (2000) and references therein.
These approaches focus on modeling of the infection dynamics of HIV, beginning with a
simple hunter-pray dynamics up to models that consider changes in the viral environment
affecting its replicative success, for example the presence of antiretroviral drugs. The latter
models qualify for approaching the problem of estimating the viral population at failure of
a regimen. The computational time, however, typically required for this in silico evolution
significantly exceeds the time available for interactive web services (e.g. about 3 min for
a single drug combination (Prosperi et al., 2009b)). Moreover, these models are based on
certain modeling assumptions and rely on parameters (e.g. rate at which new target cells
are generated, death rate of infected and uninfected cells) that are hard to estimate from
available biological data.

113
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This chapter introduces an approach for computing the viral population at the time
of treatment failure. The approach is based on finite state machines and is scalable, thus
eventually affording web services with moderate waiting times. The strategy for calculating
personalized future drug options comprises three steps: (i) selection of putative effective
regimens with methods described earlier, (ii) in silico evolution of the virus according to
a particular treatment, and (iii) assessment of the FDO at failure of that putative drug
combination.
Sections 6.1 and 6.2 introduce the framework employed for simulating the viral evolution

during treatment. Section 6.3 describes the applied mutation models along with their
assumptions, and Section 6.4 presents a validation for the mutation models. Section 6.5
concludes the chapter with final remarks and a case study focusing on the four most
prominent first-line regimens.

6.1 Weighted Finite State Transducers

Briefly, weighted finite state transducers are a family of finite state automata. They extend
the concept of simple acceptors that comprise an input alphabet (A), a set of states (Q)
with directed edges between them (E), as well as initial (I) and final (F ) states by an
output alphabet (B), costs for every edge and cost functions for initial (λ) and final (ρ)
states. Formally, a finite state acceptor is quintuple:

F = (A, Q, I, F,E),

where I, F ⊆ Q and E ⊆ Q × A ∪ {ε} × Q, with ε beeing the “empty word”. Basically,
finite state acceptors verify whether words defined over the input alphabet are valid or
not. Here, a word is a concatenation of elements of the alphabet. The verification process
starts always at the beginning of the word and in one of the initial states of the automaton.
From this initial state, the elements of the word are read one-by-one: if from the current
state there exists an outgoing edge that is labeled with the corresponding element, then
the acceptor proceeds to the target state of the arc and is ready to read the next element
of the word. A word is considered valid, only if there exists at least one initial state such
that reading the word from that initial state ends in one of the final states.
Analogously, a weighted finite state transducer is defined as:

T = (A,B, Q, I, F,E, λ, ρ),

where I, F ⊆ Q, E ⊆ Q × A ∪ {ε} × B ∪ {ε} × K × Q, λ : I → K and ρ : F → K, with
K being part of a semiring (K,⊕,⊗, 0̄, 1̄). Thus, (K,⊕, 0̄) is a commutative monoid with
identity element 0̄, (K,⊗, 1̄) is a monoid with identity element 1̄, ⊗ distributes of ⊕, and
0̄ is an annihilator for ⊗, i.e. ∀a ∈ K : a ⊗ 0̄ = 0̄ ⊗ a = 0̄. In addition to acceptors,
transducers emit elements of the output alphabet when traversing along an edge from one
state to the another. Consequently, for every valid input word, an word over the output
alphabet is generated. Moreover, in weighted finite state transducers, edges, initial states,
and final states are equipped with scores (over K). Hence, a valid input word and the
emitted output word are associated with a total score.
Finite state transducers have been used in the field of speech recognition and language

translation and provide a uniform way of representing knowledge for these tasks. In natural
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language processing knowledge is typically modeled in the form of conditional probabilities.
For example. the probability of observing a certain word w depends on the preceding words
in the sentence w′, and can therefore be represented as P (w|w′). In a finite state automata
representation each possible sequence of words, the history, gives rise to a state; every
possible succeeding word is represented by an edge leaving that state, and the probability
of this word following the history corresponds to the edge weight. For practical reasons
the history is limited to a fixed length, i.e. n-gram models model the probability of the
n-th word given the n − 1 preceding ones. Weighted finite state acceptors are sufficient
for representing such language models. Transducers, however, are required to transform
instances from one alphabet to instances from another alphabet, e.g. translating a French
input sentence into English. The naïve approach, a word-to-word translation, maps one
French input word to an English word. Unfortunately, the translation of a single word is
often ambiguous, i.e. the word can have different translations which are highly dependent
of the context. As a consequence, one has to model P (e, f |e′, f ′), where e is the trans-
lation for f and f ′ and e′ are the history of the French and English words, respectively.
Thus, every history of English and French words corresponds to a state in the transducer,
every French word together with a possible translations gives rise to an edge leaving that
state, and the probability of the French word following the history and the translation to
a particular English word given that history constitutes the edge weight. Since the proba-
bilities have to be estimated from training data, which are always scarce, the distribution
P (e, f |e′, f ′) is decomposed into P (e|f), P (f |f ′), and P (e|e′) representing the translation
model, the French language model, and the English language model, respectively. These
models can then be learned independently from different datasets and represented as indi-
vidual transducers and acceptors. The algorithm compose described below constructs an
approximation to the P (e, f |e′, f ′) representing transducer from the three individual finite
state machines.

For applications in natural language processing the obvious choice for a semiring for
transducers is the Probability semiring : (R+,+,×, 0, 1). Due to computational reasons
the Log semiring is preferred: (R ∪ {−∞,+∞},⊕log,+,+∞, 0), here all probabilities
are represented by their negative natural logarithm and ⊕log is defined as: x ⊕log y =
− log(e−x + e−y). According to these two semirings the probability of events along a
path from an initial state to a final state are multiplied, and probabilities of alterna-
tive paths are summed up. However, in language processing tasks the total probability
of a sequence of events if often dominated by the probability of the most likely path.
Thus, instead of accumulating the probabilities of all alternative paths it is sufficient to
compute the probability of the most likely path. This approximation is termed Viterbi
approximation or maximum approximation and is implemented by the tropical semiring :
(R ∪ {−∞,+∞},min,+,+∞, 0). Hence, many tasks can be solved efficiently by simply
searching the shortest path from an initial to a final state in an automaton.

Due to the computational demands required in natural language processing domains,
libraries and toolkits offering efficient implementations of algorithms based on transducers
are available, e.g. Mohri et al. (2000); Hetherington (2004); Lombardy et al. (2004); Al-
lauzen et al. (2007). For the experiments presented here the RWTH FSA toolkit (Kanthak
and Ney, 2004) is used. The toolkit is open source and offers a range of algorithms, C++
and Python interfaces as well as an command line tool. Many algorithms based on trans-
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ducers afford an on-demand implementation. Briefly, an on-demand algorithm computes
the outgoing edges (and their weights) of a given state only as soon as the state is visited.
For instance, if one wants to multiply all edge weights of a transducer with a scalar and
afterwards process a word of the input alphabet, then the multiplication can be done for all
edges explicitly before reading the word. Alternatively, in an on-demand implementation
the multiplication can be carried out while the word is processed. This has the advantage
that only edges of states that are actually required during a computation are updated.
Kanthak and Ney (2004) give a definition of local algorithms, which is a prerequisite for
the on-demand implementation. Consider an algorithm that generates a new transducer
based on one or more transducers constituting its input (e.g. composition of transduc-
ers; see following section). If this algorithm is able to generate for the new transducer
any arbitrary state and all its outgoing edges depending only on the information about
the corresponding state(s) of the algorithm’s input transducer(s), then it has the local
property. For instance, multiplication of edge weights with a scalar value has the local
property: for computing an arbitrary state in the resulting transducer, only information
on that state in the input transducer is needed (weights of the outgoing edges), all other
states are irrelevant.
The command line toolkit reads transducers in a binary and an XML format. The latter

is mainly used for construction of new transducers by the user, while the former allows
efficient storage and input-output operations. The following sections introduce some basic
and important algorithms like the composition of two weighted finite state transducers and
the extraction of the shortest path or the n-shortest paths of acceptors.

6.1.1 Composition

Weighted finite state transducer composition is the generalization of nondeterministic finite
state automata intersection. The algorithm is used to construct large complex automata
from small and simple ones. The intersection of nondeterministic finite state machines is
defined as follows. Let F1 = (A, Q1, I1, F1, E1) and F2 = (A, Q2, I2, F2, E2) be two finite
state acceptors, then the intersection automaton is defined as:

F1 ∩ F2 = F = (A, Q1 ×Q2, I1 × I2, F1 × F2, E),

where ((q1, q2), a, (q′1, q
′
2)) ∈ E ⇔ (q1, a, q′1) ∈ E1 ∧ (q2, a, q′2) ∈ E2. Basically, the new

automaton comprises one state for every combination of states of the two input automata
(Q1 ×Q2). Thus, each state in the resulting acceptor can be mapped to exactly one state
in each of the input acceptors. Likewise, the new initial (final) states are defined by all
combinations of initial (final) states of the input acceptors. Edges in the resulting acceptor
are added based on pairs of edges of the input automata that have the same edge label:
the source (target) of the new edge is the state representing the two source (target) states
of the edges in the two input automata.
When moving from acceptors to weighted transducers one has to respect the edge weights

as well as the input and output symbols. Thus, let T1 = (A,B, Q1, I1, F1, E1, λ1, ρ1) and
T2 = (B, C, Q2, I2, F2, E2, λ2, ρ2) be two weighted transducers. The composition of the two
transducers is defined as:

T1 ◦ T2 = T = (A, C, Q1 ×Q2, I1 × I2, F1 × F2, E, λ, ρ),
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Figure 6.1: Example of acceptor intersection and non-commutative transducer composi-
tion. States are represented as circles, initial states and final states are marked
using bold and double circle boundaries, respectively. Numbers inside the cir-
cles stand for the labels. Edge labels in acceptors comprise a single element of
the input alphabet, while edge labels in transducers comprise an element of the
input alphabet (left) and one element of the output alphabet (right) separated
by a colon. The first row shows the two input acceptors and intersection result
in the last column. The second row shows two input transducers and the result
of the composition left ◦ right and right ◦ left in the last column of the second
and third row, respectively.

where ((q1, q2), a, c, w1 ⊗ w2, (q′1, q
′
2)) ∈ E ⇔ (q1, a, b, w1, q

′
1) ∈ E1 ∧ (q2, b, c, w2, q

′
2) ∈ E2,

λ(q1, q2)→ w1⊗w2 ⇔ λ1(q1) = w1∧λ2(q2) = w2, and ρ(q1, q2)→ w1⊗w2 ⇔ ρ1(q1) = w1∧
ρ2(q2) = w2. The major difference (apart from updating the weights for edges, initial states,
and final states) to the construction of the intersection acceptor is that edges in transducer
composition are added based on pairs of edges of the two input transducers where the
output element of one edge matches the input element of the other edge. Consequently,
the composition of transducers is not commutative. An example of acceptor intersection
(top row) and transducer composition (lower rows) is shown in Figure 6.1.
Algorithm 2 provides the composition algorithm based on Pereira and Riley (1997)

in pseudocode. It constructs a transducer T = (A, C, Q, I, F,E, λ, ρ) from two input
transducers T1 and T2. This algorithm, however, assumes ε-free input transducers and uses
a queue S. The function E[q] retrieves all edges leaving the state q and functions i[e], o[e],
and n[e] return the input label, output label, and target state of edge e, respectively.
A problem with ε-containing transducers can occur when an ε-output edge of T1 is

matched to (a sequence of) ε-input edges of T2. In this case, the application of Algorithm 2
could generate redundant ε-paths in the resulting transducers that (depending on the
semiring) could lead to incorrect path costs. Thus, all but one ε-path have to be removed
from the composite transducers. Remarkably, this filtering can be carried out by another
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Algorithm 2 Weighted-Composition(T1, T2)
Q← I1 × I2
S ← I1 × I2
while S 6= ∅ do

(q1, q2)← Head(S); Dequeue(S)
5: if (q1, q2) ∈ I1 × I2 then

I ← I ∪ {(q1, q2)}
λ(q1, q2)← λ1(q1)⊗ λ2(q2)

end if
if (q1, q2) ∈ F1 × F2 then

10: F ← F ∪ {(q1, q2)}
ρ(q1, q2)← ρ1(q1)⊗ ρ2(q2)

end if
for each (e1, e2) ∈ E[q1]× E[q2] such that o[e1] = i[e2] do

if (n[e1], n[e2]) /∈ Q then
15: Q← Q ∪ {(n[e1], n[e2])}

Enqueue(S, (n[e1], n[e2]))
end if
E ← E ∪ {((q1, q2), i[e1], o[e2], w[e1]⊗ w[e2], (n[e1], n[e2]))}

end for
20: end while

return T

transducer. To this end, the input transducers have to be preprocessed: output (input)
ε-labels in transducer T1 (T2) are mapped to ε2 (ε1) resulting in T̃1 (T̃2). Using the filter
transducer FT , T1 ◦ T2 can correctly be computed by T̃1 ◦ FT ◦ T̃2 using Algorithm 2 (for
details see e.g. Pereira and Riley (1997) and Mohri (2005)).

Returning to the language translation example from above, one would create two accep-
tors, one representing the English language model Elm and one the French language model
Flm. A simple translation transducer from French to English FE t can be constructed by
a transducer comprising one state and edges for each French input word and a possible
English translation. The operation Flm ◦ FE t ◦ Elm builds a transducer that translates
French sentences to English TF→E . For translation, a single French sentence is represented
as a linear acceptor f with edge labels corresponding to French words, and f ◦ TF→E gen-
erates all possible English translations of f . However, for translating f most parts of the
translation transducer TF→E are not visited. Here the use of an on-demand implemen-
tation together with pruning (see following sections) results in improved computational
performance.

A transducer example from the domain of Bioinformatics is given by the combination of
translating a sequence of nucleotides into amino acids and aligning the result to a reference
amino acid sequence. For this task two transducers are required. Transducer TTr translates
a sequence of nucleotides into a sequence of amino acids, and a second transducer encodes
the alignment TAl. TTr can be constructed so that all three reading frames are translated,
i.e. there is the possibility to read at most two nucleotides without starting the translation
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process (see Figure 6.2). The lower part of Figure 6.2 depicts a sketch of the alignment
transducer, it supports affine gap costs (g for gap open and ge for gap extend) and one
edge for each possible mismatch of amino acids, the cost of a mismatch m can, for instance,
be related to the BLOSUM matrix. Let Sq,nt and Sr,A be linear acceptors representing the
query nucleotide sequence and the reference amino acid sequence using the edge labels,
respectively, then Sq,nt ◦TTr ◦TAl ◦Sr,A computes three possible translations of nucleotides
to amino acids and the cost of all possible alignments to a reference.

6.1.2 Single Source Shortest Path

The previous section demonstrated how large transducers can be constructed from small
ones. The information one wants to compute, however, is still concealed in these large
directed graphs. In particular, the set of all possible translations of a French sentence
into English is of less interest than the most likely translation. The same holds true
for possible alignments. If the transducer is defined over a tropical semiring, however,
then the desired information can be retrieved rather efficiently from the large automaton,
since standard algorithms can be applied to solve the single source shortest path (SSSP)
problem for computing the shortest path from an initial state to a final state. For example,
Dijkstra’s algorithm (Dijkstra, 1959) can be applied if all edge weights are non-negative,
the single source limitation can be circumvented by a slight modification of the automaton:
introduction of a new single initial state that links via ε-edges to all previous initial states.
The same modification can be applied to the final states, thus only the cost of the shortest
path between the single initial and the single final state is of interest. Theoretically, as
soon as the execution of Dijkstra’s algorithm extracts the final state from the queue, it
can be stopped. For allowing also the more general case with negative edge weights (but
non-negative circles) the Bellman-Ford algorithm (Bellman, 1958) can be used. Of note, if
the semiring used by the transducer is defined over R+, then one can safely apply Dijkstra’s
algorithm.
The RWTH FSA toolkit implements Algorithm 3 that was introduced by Mohri (2002).

The algorithm is termed Generic Single Source Shortest Distance because some well known
and widely used algorithms are special cases of this algorithm (hence generic) and depend-
ing on the semiring the term path is not pertinent for what the algorithm computes (hence
distance). Mohri showed that the algorithm is correct for any semiring and queuing dis-
cipline. Precisely, given a transducer that is defined over a tropical semiring the queuing
discipline determines which algorithm is executed: if the queue used in Algorithm 3 follows
a first-in first-out or shortest-first principle then the algorithm is equivalent to executing
Bellman-Ford or Dijkstra, respectively.
Briefly, the algorithm maintains two properties for each state, d[q] and r[q] store the

current distance estimate from the initial state i to state q and the total weight added to
d[q] since the last time q was extracted from the queue S, respectively. Like in Algorithm 2,
E[q] represents all edges leaving q, and n[e] and w[e] return the target state and the edge
weight, respectively. In the tropical semiring, ⊕ is equal to min. Thus, intuitively, in this
case the statement in Line 11 checks whether the current distance of n[e] to i is shorter
than the current distance R from i to q plus the edge weight from q to n[e]. If this is not
the case, then d[n[e]] and r[n[e]] are updated. Furthermore, if n[e] is not in the queue it is
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Figure 6.2: Example transducers for translating nucleotide sequences into amino acid se-
quences and alignment of two sequences. The notation for the transducers is
the same as in Figure 6.1. Furthermore, *EPS* corresponds to ε (the “empty
word”) and the slash in the edge label separates the edge weight (on the right)
from input and output elements (on the left). The top transducer TTr trans-
lates a sequence of nucleotides into amino acids, the first two states (0 and 1)
allow to read any nucleotide (n) without starting the translation process, the
states (3 and 4) represent the fact that the first (n1) and second (n2) nucleotide
of a codon have been read, respectively, and the arc between state 4 and 2 emits
the amino acid (A) encoded by the codon n1n2n3. The bottom transducer TAl
encodes an alignment with affine gap costs. State 0 has arcs for matches (X:X)
and mismatches (X:Y) at cost m. Furthermore, states 1 and 2 encode deletions
and insertions, respectively, with respect to the reference sequence.
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Algorithm 3 Generic-Single-Source-Shortest-Distance(T , i)
for j ← 1 to |Q| do
d[j]← r[j]← 0̄

end for
d[i]← r[i]← 1̄

5: S ← {i}
while S 6= ∅ do
q ← Head(S); Dequeue(S)
R← r[q]
r[q]← 0̄

10: for each e ∈ E[q] do
if d[n[e]] 6= d[n[e]]⊕ (R⊗ w[e]) then
d[n[e]]← d[n[e]]⊕ (R⊗ w[e])
r[n[e]]← r[n[e]]⊕ (R⊗ w[e])
if n[e] /∈ S then

15: Enqueue(S, n[e])
end if

end if
end for

end while

added to S so that its outbound edges can be updated later. For a detailed analysis of the
running time, possible modifications of the algorithm and correctness see Mohri (2002).
Given the result of any single source shortest distance algorithm, the shortest path from

the source to all other states can easily be extracted. In particular, the paths leading
to final states. Therefore, the best translation of a French sentence into English can
be found by computing best(f ◦ TF→E). Analog to this, the best reading frame and
alignment of a nucleotide sequence to an amino acid sequence is retrieved by executing
best(Sq,nt ◦ TTr ◦ TAl ◦ Sr,A).

6.1.3 N -Shortest-Strings

Due to imperfect models or violated model assumptions, the best hypothesis of an au-
tomaton, as represented by the shortest path, need not be the best solution with respect
to a scoring function. If the model is sufficiently accurate, however, then the best (or a
better) solution might be among the top n (i.e. most likely) hypotheses represented by the
automaton. Moreover, these n-best lists can be post-processed to form a final solution.

In the case of a deterministic acceptor, the n-best paths in the automaton are equivalent
to the n-best hypotheses or n-best strings. In nondeterministic acceptors, however, the
n-best paths may contain duplicate hypotheses (with different costs). Thus, in order to
obtain n distinct hypotheses, nondeterministic automata have to be made deterministic
before computing the n-best paths.
The process of computing a deterministic weighted finite state automata from a nonde-

terministic one works analogously to the unweighted case via the classic subset construction
algorithm (Aho et al., 1986). Unlike in the unweighted case, not all weighted automata
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can be made deterministic. Fortunately, any acyclic weighted automaton is determiniz-
able (Allauzen and Mohri, 2002). Furthermore, the determinization algorithm affords a
local implementation (Mohri and Riley, 2002). This makes the algorithm extremely useful
for extraction of n-shortest-strings.

Given an (non)deterministic acceptor F = (A, Q, I, F,E), for which we can assume
(without loss of generality) that |I| = |F | = 1, one has to carry out the following steps
to compute the n-best strings. First, a potential function φ is computed, which provides
for every state q ∈ Q the shortest distance to the single final state. Obviously, φ can
be computed by inverting all edges in the automaton and executing Algorithm 3 starting
from the single final state. Then, the automaton F is determinized, resulting in the
deterministic automaton F ′ = (A, Q′, I ′, F ′, E′). Based on the potential function φ defined
for F , the potential function Φ for F ′ can be derived on demand (Mohri and Riley, 2002).
This potential function for the states of the determinized automaton is the basis for the
ordering of the elements in the priority queue S that is used in Algorithm 4 (based on Mohri
and Riley (2002)). Precisely, the ordering of the queue is defined as: (p, c) < (p′, c′) ⇔
(c+ Φ[p] < c′ + Φ[p′]), where p, p′ ∈ Q′, and c and c′ are the costs from the initial state to
the states q and q′, respectively. Since Φ never underestimates the cost from the current
state to a final state, one can view Φ also as the admissible heuristic that plays a central
role in the A∗ algorithm (Hart et al., 1968).

Algorithm 4 n-shortest-paths(F ′, n)
for p← 1 to |Q′| do
r[p]← 0̄

end for
π[(i′, 0)]← NIL

5: S ← {(i′, 0)}
while S 6= ∅ do

(p, c)← Head(S); Dequeue(S)
r[p]← r[p] + 1
if r[p] = n ∧ p ∈ F then

10: Exit
end if
if r[p] ≤ n then

for each e ∈ E[p] do
c′ ← c⊗ w[e]

15: π[(n[e], c′)]← (p, c)
Enqueue(S, (n[e], c′))

end for
end if

end while

The algorithm maintains for each state of the automaton, which was made deterministic,
the attribute r[p] that stores the number of times the state (p) was extracted from the
priority queue S. This attribute is essential as it provides the stopping criterion for the
algorithm: r[p] is initialized with 0 for all states and as soon as the single finial state is
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extracted from the queue n times (lines 9-11) the algorithm terminates. Paths are defined
by storing a predecessor π for each pair (p, c) (Mohri and Riley, 2002).

The potential function φ can be exploited in further ways together with pruning. Briefly,
when applying forward pruning the search algorithm does not follow edges that lead to a
total path cost exceeding a certain threshold. Mohri and Riley (2001) introduced a weight
pushing algorithm that requires the potential function in order to move path weights further
to the beginning (or end) of a path. Having the costs of the complete path accumulated
at the beginning of the path facilitates more efficient forward pruning, i.e. one can decide
not to search along paths that promise a high total cost early in the search process.

6.2 Transducers in Therapy Planning

The strategy for assessing future drug options includes the computation of an estimate of
the viral sequence at failure of the therapy. The baseline sequence can be represented as a
linear acceptor with the edge labels corresponding to the sequence positions. For allowing
an unambiguous identification, edges are labeled Tar_Pos_AA with Tar, Pos, and AA
corresponding to the protein the sequence encodes (here Tar ∈ {PRO, RT}), the amino
acid position, and the amino acid at that position, respectively.
Given a functionMt(p, a, a′) that provides the probability of mutating the amino acids a

to a′ at position p under the therapy t, one can easily construct a transducer representing
this function. This is illustrated by the left transducer in Figure 6.3. The self loops at the
initial state and the final state read single sequence positions and leave them unchanged
(at no cost). All transitions from the initial state to the final state introduce exactly
one mutation, e.g. at position p from a′ to a′ at the cost of Mt(p, a, a′). A composition
of the linear sequence automaton with this mutation transducers introduces all possible
mutations at all positions. Using the algorithms described above, one can retrieve the
sequence with the most likely mutation or the nmost likely sequences. Figure 6.4 displays a
toy example. The base sequence comprises (the first) three amino acids of the protease (a).
The mutation transducer (b) allows one possible mutation for each position (colored edges).
The composition of the two automata results in a transducer that has one mutation for each
path from the initial state to the final state (c). The most likely mutation can be extracted
by finding the shortest path in that transducer (d), and the list of n-best mutations can
be generated by extracting the n-best paths (e). The latter algorithm, however, is only
defined for acceptors, thus the mutations (colored edges) cannot be inferred from the
graph anymore. For introducing two mutations in the baseline sequence one simply has to
compute the composition of the transducer in Figure 6.4 c) and the mutation transducer.
Transducers constructed in a different way can be used to assess the activity of a regi-

men with respect to a given genotype. The right transducer in Figure 6.3 illustrates the
concept of these rating transducers. In this automaton the output labels are identical to
the corresponding input label for all edges. Thus, a composition of an other transducers
with the rating transducers leaves the edge labels unchanged. In the rating transducer,
the edges are equipped with a weight derived from the relevant rating function Rt(p, a).
The rating function Rt(p, a) provides a score for amino acid a at position p in the context
of treatment t. For instance, Rt(p, a) can express the resistance amino acid a at position
p causes to treatment t. The initial state has a cost Rt(0) which corresponds to the offset
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Figure 6.3: Concept of mutation and rating transducers. The notation of the transducers is
the same as in previous figures. The mutation transducer (left) for each treat-
ment has two states, connections between these states introduce mutations.
The edge weight corresponds to the score of the mutation as represented by
the function Mt(p, a, a′). The rating transducer (right) has one loop edge for
every position and amino acid, the edge weight Rt(p, a) can for example corre-
spond to the weights for an amino acid at a certain position as derived from the
linear SVM models, which predict in vitro drug resistance. The weight of the
state Rt(0) then corresponds to the offset of the linear model z0 (see Eqn. 6.2).

of that rating function. After computing the composition of a linear acceptor representing
a sequence (short: sequence acceptor) with such a rating transducer, each edge in the se-
quence acceptor receives a score. The sum of all scores along a path constitutes the activity
of a treatment against the sequence represented by the path. Rating transducers can for
instance be used to remove ambiguities from an input sequence. In our case, ambiguities
are by parallel edges between subsequent states in the sequence acceptor. In the composi-
tion of the sequence acceptor and the rating transducer these edges are extended by a score
corresponding to the amino acid at the alignment position. Thus, one can arrange that
the shortest path in the transducer corresponds to the most resistant variant represented
by the sequence.
So far the transducers only represent mutation or rating instructions for a single treat-

ment. However, it is trivial to extend them to allow mutation and rating instructions for
different treatments within one automaton. This allows to store all models within a single
large transducer instead of multiple small ones. Figure 6.5 extends the toy example with a
second treatment in the mutation transducer. For selecting the correct mutation function,
the first edge in the sequence acceptor is labeled with the corresponding treatment.

6.3 Mutation Models

The major problem with building the mutation transducer is the estimation of correct mu-
tation probabilities (or scores). The following two subsections present approaches that use
either in vitro or in vivo data for estimating mutation probabilities. The proposed models
all aim at assessing mutation probabilities with respect to individual drugs (exceptions
are the RTI mutation probabilities estimated from in vivo data). This approach has a
drawback since mutation models for individual drugs have to be combined in some way
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Figure 6.4: Toy transducer example. HIV sequences are represented by linear acceptors
(a), the mutation transducer for each treatment comprises two states, with
the connecting edges encoding the mutations (b). The composition introduces
every possible mutation into the sequence (c). The most likely mutation can be
retrieved via finding the shortest path (d). Likewise the nmost likely mutations
can be extracted by listing the n-best paths.
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(b) mutation transducer

Figure 6.5: Toy transducer example for multiple treatments. The sequence information
is preceded by an edge with a treatment label (a), the complete mutation
transducer comprises two states for each treatment, the initial state connects
to the pre-mutation state via an edge labeled with the treatment (b).

for building the Mt functions that model mutation probabilities for a specific treatment.
On the other hand, having mutation models for individual drugs available, enables the
computation of therapy mutation model for every possible combination of drugs. If not
stated otherwise the therapy mutation models are constructed as geometric mean of the
mutation models for individual drugs

Mt(p, a, a′) =
∏
d∈t

Md(p, a, a′)
1
|t| ,

where d are the drugs used in therapy t and |t| corresponds to the number of drugs in the
therapy. Since the transducers are defined over the tropical semiring this is equivalent to

logMt(p, a, a′) =
1
|t|
∑
d∈t

logMd(p, a, a′).

Of note, the framework also supports the use of a weighted geometric mean:

Mt(p, a, a′) =
∏
d∈t

Md(p, a, a′)wd,t ⇔ logMt(p, a, a′) =
∑
d∈t

wd,t logMd(p, a, a′) (6.1)

with
∑

d∈twd,t = 1.
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6.3.1 Mutation Probabilities Derived From GENO2PHENO

The first model is motivated by the work of Beerenwinkel et al. (2003b) and assumes
that mutations, which confer the most dramatic change in resistance with respect to the
current regimen, are selected first during therapy. Unlike the work by Beerenwinkel et al.,
the model used here does not make use of the “maximum assumption” between drugs of
the same class (see Section 4.1.1), but it simply takes into account the change of resistance
against all drugs when a mutation is introduced. The SVM models in geno2pheno use
a linear kernel to predict the decadic logarithm of the resistance factor; this allows for
rewriting the regression function as a linear model (see Section 3.1). In order to simplify
further steps we rewrite the linear model ~w ·~x+b for predicting phenotypic drug resistance
as:

log (rf(seq)) = z0 +
N∑
p=1

∑
a

zp,a ∗ δ(a, seq(p)), (6.2)

where z0 is the offset (before b), zp,a is the weight for amino acid a at position p ∈ {1, . . . , N}
(extracted from the corresponding position in ~w), and δ(a, seq(p)) is 1 only if the query
sequence presents amino acid a at position p (representing the feature vector ~x). Because
of this structure the weights zp,a can be used directly to construct the mutation function
logM(p, a, a′). Precisely, the mutation score is defined by the difference in predicted resis-
tance between a sequence seq and a mutant at position p exchanging amino acid a with
a′ (seqp,a→a′):

logM(p, a, a′) = log (rf(seq))− log
(
rf(seqp,a→a′)

)
(6.2)
= z0 +

N∑
p=1

∑
a

zp,a ∗ δ(a, seq(p))

−

z0 +
N∑
p=1

∑
a

zp,a ∗ δ(a, seqp,a→a′(p))


= zp,a − zp,a′ .

The use of the raw resistance scores, however, introduces a problem since different drugs
show different ranges of resistance levels. Thus, for minimizing range-related problems, the
models were scaled to exhibit similar resistance levels for each drug. The scaling works in
two steps and focuses on the bimodal distribution of resistance factors (Figure 3.3): first
mean µ and variance σ of the susceptible subpopulation were determined for each drug and
the resistance factor was transformed to log(rf′) = log(rf)−µ

σ . Second, the values were scaled
(i.e. divided by a scalar s) such that the mean of the resistant subpopulation µresist has
the same value for all drugs. Note that the first transformation is similar to the z-scores
used in geno2pheno (see Section 3.2). Using this scaling the score of a mutation is

logM(p, a, a′) =
zp,a − zp,a′

σ · s
(6.3)

and a combination of Eqn. 6.1 and Eqn. 6.3 yields for arbitrary therapies

logMt(p, a, a′) =
∑
d∈t

wd,t
zd,p,a − zd,p,a′

σdsd
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with d being a drug in treatment t, wd,t standing for the weight of the drug in the treatment
(
∑

d∈twd,t = 1). All other variables receive and additional index d indicating that they
are specific for an individual drug. This mutation model is termed g2praw.

An alternative model, also derived from geno2pheno, deduces M(p, a, a′) from the
probability that a susceptible sequence becomes resistant after acquiring an additional
mutation. Precisely, given a set of sequences, let S be the number of all susceptible
sequences, Sp,a ≤ S be the number of all susceptible sequences with amino acid a at
position p, and Rp,a→a′ ≤ Sp,a be the number of sequences that move to the resistant
subpopulation after mutating a to a′. Hence

M(p, a, a′) =
Rp,a→a′

Sp,a
(6.4)

expresses the probability that a sequence becomes resistant after mutating a to a′. Ob-
viously, 0 ≤ M(p, a, a′) ≤ 1 holds and no scaling for the scores is required for achieving
compatibility between different drugs. Here, we define the cutoff between susceptible and
resistant viruses as the intersection of the Gaussians modeling the distribution of RF val-
ues for susceptible and resistant viruses (Figure 3.3). The probability of transcending the
boundary from susceptible to resistant by accumulating one mutation clearly depends on
the level of resistance the virus currently exhibits and the magnitude of resistance conferred
by that additional mutation. Hence, the potential of a certain mutation is estimated from
a dataset by averaging over all sequences. The resulting M(p, a, a′) scores are dominated
by the magnitude of change in resistance conferred by the mutation from a to a′ and are
therefore highly correlated with the corresponding scores of g2praw. For instance, a muta-
tion that increases phenotypic resistance by 10 fold can turn a larger fraction of susceptible
viruses into resistance ones than a mutation that increases resistance only by 2 fold. Con-
sequently the former mutation will have a larger M(p, a, a′) score. Approximately 30, 000
HIV-1 pol sequences containing protease and reverse transcriptase from the EuResist
database were used to estimate the probabilities. This model is termed g2ptransition. Fig-
ure 6.6 depicts scatter plots between logM(p, a, a′) from g2praw (x-axis) and g2ptransition

(y-axis) for all drugs.
The scatter plots show clearly that there is a substantial correlation between the two

mutation scores. However, the plots reveal also that for some drugs the assumption, that
the most resistance conferring mutation will be selected first during treatment, may lead
to the preferred accumulation of rather rare mutations (e.g. RT mutation Q151M for ddI
and d4T). For smoothing the probabilities with respect to the chance of a mutation to
actually emerge Eqn. 6.4 is modified to

M(p, a, a′) =
Rp,a→a′

Sp,a
∗
Rp,a′

R
,

with R and Rp,a representing the number of all resistant sequences and the number of re-
sistant sequences having amino acid a′ at position p, respectively. Thus, Rp,a′/R expresses
the probability of observing a certain mutation in the resistant subpopulation. This mu-
tation model is termed g2pmixed. Figure 6.7 depicts scatter plots between logM(p, a, a′)
from g2praw (x-axis) and g2pmixed (y-axis) for all drugs.

For practical reasons the models were restricted to allowing only mutations from and to
amino acids that actually occur in the training data of geno2pheno at a given position.
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Figure 6.6: Scatter plots between mutation scores of g2praw (x-axis) and g2ptransition

(y-axis) for different drugs. Mutations from the wild type amino acid to a
mutation listed by the IAS list (Johnson et al., 2008) for the corresponding
drug class are colored red.
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Figure 6.7: Scatter plots between mutation scores of g2praw (x-axis) and g2pmixed (y-axis)
for different drugs. Mutations from the wild type amino acid to a mutation
listed by the IAS list (Johnson et al., 2008) for the corresponding drug class
are colored red.
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Moreover, the g2pmixed model excludes mutations that did not appear among resistant
sequences from the EuResist database by definition, since Rp,a′ = 0⇒M(p, a, a′) = 0.

6.3.2 Mutation Probabilities Derived From Treatment Data

The previously introduced mutation models assume (to a varying extent) that mutations
conferring the largest increase of resistance as measured in vitro are selected first dur-
ing treatment. Certainly, this assumption does not hold for real treatments. In fact, the
order of mutations can also be expected to be influenced by restrictions imposed by the
protein structure. For example, a mutation might result in an impossible side chain con-
formation and therefore requires a prior mutation in the vicinity that may relax the side
chain placement. In the case of the HIV integrase, it was suggested that different path-
ways may be induced by alternative binding conformations of the inhibitor to the target
protein (Loizidou et al., 2009). These circumstances are not respected by in vitro drug
resistance. A perfect mutation model should consider all these aspects. However, as briefly
mentioned in the previous section there are some rarely occurring mutations that confer
a large change in resistance. Unfortunately, the mechanisms underlying these rare events
are not yet understood and, in general, knowledge on how and why a certain mutation is
preferred over another one is rather scarce.
Instead of integrating all these different (and probably incomplete) sources of knowledge,

one can study the history of the virus for constructing a mutation model. The mutagenetic
trees introduced in Chapter 4 rely on the fact that in a large database of viral sequences
every step of a resistance pathway occurs sufficiently often. Briefly, if mutation X is rarely
observed alone but rather frequently in the presence of mutation Y , one can assume that Y
has to be acquired beforeX. The success of the mutagenetic trees demonstrates that relying
on large databases for deriving evolutionary models is a promising alternative. Obviously,
longitudinal sequence data from monotherapies constitute the ideal source of information
for estimating in vivo mutation probabilities. Monotherapies, however, are considered
insufficient regarding today’s standard of care and are therefore not enriched in large
databases. Nowadays standard therapies typically comprise multiple drugs from different
drug classes. The majority of these treatments, however, uses only one protease inhibitor
or one NNRTI, thus even modern therapies can be regarded as pseudo-monotherapies.
Precisely, from the approximately 100,000 therapies stored in the EuResist database
99.6% and 95.6% of the NNRTI- and PI-containing regimens, respectively, apply only
one representative of the corresponding class. In contrast, only 15.8% of the recorded
treatments are pseudo NRTI monotherapies. NRTIs are given mostly in combination and
consequently 73.5% of the NRTI regimens contain exactly two NRTIs. These statistics
suggest that in general it should be possible to deduce in vivo mutation probabilities for
individual drugs (PIs and NNRTIs) or at least for drug pairs (NRTIs) from large databases.
The bottleneck of this estimation is the availability of sequence data, as at least one
sequence is required before a treatment change (baseline genotype) and one during the
treatment (follow-up genotype). Figure 6.8 depicts a schematic description of the training
data requirements and a graph relating the time allowed between baseline genotype and
treatment start to the size of the resulting training set.
Beyond a threshold of 180 days, the amount of available training sequences grows only
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Figure 6.8: The top figure shows a schematic description of the training data requirements.
The baseline sequence has to be obtained at most x before start of the treat-
ment, while the follow-up sequence may be obtained at any time during the
treatment. The lower graph depicts the relationship between x and the size of
the dataset.

slowly with respect to the time frame allowed between obtaining the baseline sequence and
treatment start. The downside of a large time frame is that the viral population is under
continuous selective pressure by the old treatment and thus might accumulate additional
mutations before start of the next treatment. From this point of view, a small time frame
is preferred. Here, however, the downside is clearly the lack of available sequence data.
For complying with the standard datum definition the cutoff of 90 days was selected and
gave rise to approximately 1,900 sequence pairs. For exploiting the wealth of the Eu-
Resist database a cutoff of 720 days was investigated as well. These datasets provide
for every treatment the applied drugs, the baseline sequence, the follow-up sequence, and
the three time points. For estimating the in vivo mutation rates, the available informa-
tion for a sequence pair is represented as an itemset. On this dataset, itemset mining is
applied to discover interesting rules, e.g. rules in the form of “drug → mutation”. The
confidence of a rule serves as the mutation probability. The plain application of an itemset
mining algorithm unfortunately retrieves a number of artifacts, for instance, rules stating
that zidovudine causes NNRTI related mutations with a high confidence. These artifacts
mainly result from the co-administration of several compounds and have to be removed
in a postprocessing step. Furthermore, the approach assumes that RTIs do not influence
mutation probabilities of positions in the protease and vice versa. This allows to treat the
estimation of protease and RT mutations as two independent problems and consequently
reduces the amount of artifacts. The following two sections describe the itemset mining



6.3 Mutation Models 133

and subsequent filtering in detail. The resulting mutation models are termed vivo90 and
vivo720.

Mining Frequent Mutations

In frequent itemset mining instances are represented as sets containing a subset of N
binary attributes termed items. Due to historic reasons, each instance is called trans-
action t ⊆ {i1, i2, . . . , iN} and a collection of transactions is referred to as database
D = {t1, t2, . . . , tM}. In our case, each drug applied in a regimen is represented by one item.
Furthermore, every difference between the baseline sequence and the follow-up sequence is
encoded as an item. For limiting the number of items to be considered in total, only the
mutations in the baseline sequence with respect to the reference HXB2 were encoded as
single items (instead of all positions of the baseline sequences). Ambiguities at positions
were resolved, i.e. a1, . . . , aj at one position in the baseline sequence was encoded as j
items. The same holds true for encoding the differences between baseline and follow-up
sequence.
Given a large database, one wants to find sets of items that frequently occur together

in transactions, i.e. item sets whose support exceeds a certain threshold. The support of
an itemset X is defined as the number of times all items of X occur together in the same
transaction in the database: supp(X) = |{m|X ⊆ tm}|. Frequent itemsets can be used to
derive rules X1 ⇒ X2, with X1, X2 ⊂ X ∧X1∩X2 = ∅. The confidence of a rule is defined
as

conf(X1 ⇒ X2) =
supp(X)
supp(X1)

.

These rules are termed association rules and can be interpreted as P (X|X1) (Agrawal
et al., 1993).
The best-known algorithm for finding frequent itemsets is the Apriori algorithm (Agrawal

and Srikant, 1994). Apriori exploits the fact that

X1 ⊆ X ⇒ supp(X1) ≥ supp(X). (6.5)

In consequence, this means that if X1 is not considered a frequent itemset, then a set
containing X1 can never be a frequent itemset, and also that if X is a frequent itemset,
then all subsets of X are frequent itemsets, too. The algorithm limits the search space by
first finding all frequent n-itemsets (|X| = n) and based on these defines candidates for
frequent n+ 1-itemsets. Precisely, if X1, X2 are frequent n-itemsets and X1 ∩X2 = n− 1,
then X1 ∪ X2 is a candidate for a frequent n + 1-itemset. The non-frequent candidate
sets are then discarded by checking if all subsets of size n are frequent. The candidate
generation and validation, however, can be quite costly in terms of computation.
The frequent pattern (FP) tree mining algorithm avoids the candidate generation step (Han

et al., 2004). The FP tree mining algorithm first represents the database D as an FP tree.
In essence, an FP tree is a prefix tree with counts of occurrences of a prefix stored in the
node representing that prefix. For efficient tree traversal the FP tree maintains an item
header table pointing to an item’s occurrences in the tree via a linked list. Figure 6.9
depicts an example comprising nine transactions and the resulting FP tree including its
header table.



134 6 Planning Sequences of HIV Therapies

List of itemIDs reordered list
{I1, I2, I5} (I2, I1, I5)
{I2, I4} (I2, I4)
{I2, I3} (I2, I3)
{I1, I2, I4} (I2, I1, I4)
{I1, I3} (I1, I3)
{I2, I3} (I2, I3)
{I1, I3} (I1, I3)
{I1, I2, I3, I5} (I2, I1, I3, I5)
{I1, I2, I3} (I2, I1, I3) I5:1

I2
I1
I3
I4
I5

7

6
2
2

6

Item ID Support Node−link null {}

I3:2 I4:1 I3:2I1:4

I5:1

I3:2 I4:1

I2:7 I1:2

Figure 6.9: The left table lists a database comprising 9 transactions. In the right column
the items I1,. . . ,I5 are ordered with respect to their frequency in the database.
The FP tree represents exactly this database. The header table allows for an
efficient retrieval of all occurrences of an item within the tree. This is needed to
construct the conditional pattern base. The colored edges indicate the links one
has to traverse for constructing the conditional pattern base for I3. Example
adapted from Kamber and Han (2001).

For the FP tree construction the items within every transactions are first ordered in
decreasing order of their support in the whole database. Of note, after the reordering the
itemsets are no longer sets but item tuples. The root node of the tree is labeled with the
empty set, then each transaction tm is inserted into the tree in the following way: starting
from the root the tree is traversed following the order imposed by the items in transaction
tm, if no branch exists then it is created and the counter at the target node is initialized
with 0, after the last item of tm the count on each visited node is increased by one. The task
of finding frequent patterns in the database is now transformed to mine frequent patterns
in the FP tree.

The FP tree is mined recursively. The process starts with constructing the conditional
pattern base for each frequent 1-itemset. The frequent 1-itemsets can easily be determined
from the header table. The conditional pattern base for an item in is simply given by the
itemsets on all paths from nodes labeled with in to the root node with the support set to the
count stored in the in node. For example, the conditional pattern base for I3 in Figure 6.9
is {(I2 I1: 2), (I2: 2), (I1: 2)} as indicated by the colored solid edges. The occurrences
of I3 in the tree can easily be found by following the linked list (colored dashed edges).
Another FP tree is constructed for the conditional pattern base and mined for frequent
patterns. The end of the recursion is reached when either the FP tree for the conditional
pattern base is empty, i.e. comprises only the root node, or the FP tree comprises only
a single path. In the latter case, all combinations of nodes on that single path are (parts
of) a frequent pattern. Algorithm 5 provides pseudo code for the recursive FPgrowth
function (adapted from Kamber and Han (2001)).

Due to the excessive computational requirements of Apriori, the FP tree mining was
used to find frequent mutations caused by protease and reverse transcriptase inhibitors. A
pattern was considered frequent in the case of protease mutations and reverse transcriptase
mutations if it occurred 12 and 20 times, respectively. These thresholds were manually set
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Algorithm 5 FPgrowth(Tree, α)
if Tree contains a single path P then

for each combination (denoted as β) of the nodes in path P do
generate pattern β ∪ α with supp(β ∪ α) = minimum support of any node in β

end for
5: else

for each αi in the header of Tree do
generate pattern β = αi ∪ α with supp(β) = supp(αi)
construct β’s conditional pattern base and β’s conditional FP_tree: Treeβ
if Treeβ 6= ∅ then

10: FPgrowth(Treeβ, β)
end if

end for
end if

and represent a trade-off between robustness of mined rules and the number of distinct
rules. For estimating the mutation probability and its variance 1,000 bootstrap samples of
the original dataset were generated.

Postprocessing of Mutation Rules

For protease and reverse transcriptase, executing the FP tree mining algorithm results in
3323 and 2283 (61,498 and 24,968) frequent patterns on average per bootstrap replicate, re-
spectively, using a cutoff of 90 (720) days. A large fraction of these frequent patterns is not
of interest for our application. Combining results from the bootstrap replicates by taking
the union of the discovered patterns and limiting the list of frequent patterns to itemsets
containing at least a drug and one additional mutation (i.e. difference between baseline
sequence and follow-up sequence) yields 171,993 and 21,124 (4,844,840 and 217,042) po-
tentially interesting patterns for protease and RT, respectively, using the 90 (720) days
cutoff. Figure 6.10 a) depicts the relationship between the median support (x-axis) and
the number of bootstrap replicates, in which a pattern was considered frequent (y-axis) for
the protease dataset using the 720 days cutoff. As expected, the majority of the patterns
was selected only in very few bootstrap replicates (Figure 6.10 b)), e.g 105,032 and 4117
patterns were selected once and at least 200 times, respectively, on the protease 90 days
dataset. However, at first, all frequent patterns were rewritten as rules. In general, a
frequent n-itemset can be written as

∑n−1
i=1

(
n
i

)
different rules. In our application, however,

there is only one meaningful rule per pattern. Precisely, an item of a pattern is either a
compound, a baseline mutation, or an additional mutation, thus the only interesting rule
has drugs and baseline mutations on the left side and additional mutations on the right
side. This allows for interpreting the confidence of a rule as the probability of developing
a certain mutation (or a list of mutations) given a drug and a set of baseline mutations.
Unfortunately, the application of an association rule mining algorithm on our kind of data

generates a large number of artifact rules originating from the frequent co-administration
of drugs. For example, since the year 2000 the activity of protease inhibitors is increased
by administering a boosting dose of ritanovir (RTV) that occupies the cytochrome P450-
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(a) support vs. bootstrap selection (b) histogram bootstrap selection

Figure 6.10: Scatter plot between the median support and the times a pattern was selected
in a bootstrap replicate (a). Histogram of the times a pattern was selected
from the 1000 bootstrap replicates (b). Both figures are derived from the
protease 720 days cutoff dataset.

mediated metabolism in the human liver (Kumar et al., 1996) and therefore allows improved
plasma levels of drugs that undergo the same metabolism (typically protease inhibitors).
As a consequence, today RTV (or RTVb for boosting dose) is part of every PI containing
regimen and indeed, approximately 70% of PI containing treatments in the dataset list
RTV as one of the drugs, thus many mined rules claim that RTV is the cause for certain
mutations. This is most certainly not the case, however, and corresponding rules have to
be filtered out. For the reverse transcriptase there exist similar cases, lamivudine (3TC)
for example is used in approximately 60% of the NRTI containing therapies and a number
of rules accordingly blame 3TC for causing a great variety of mutations. In fact, 3TC is
only associated with mutations at positions 65 and 184 (Johnson et al., 2008). On the
other hand, other RTIs are connected with the appearance of mutations at position 184
since due to the relation in Eqn. 6.5 all frequent itemsets containing 3TC imply a frequent
itemset without 3TC. This example demonstrates that inferring which RTI causes which
RT mutation is a challenge. The subsequent application of the mutation models, however,
does not require the estimation of models for individual drugs. Especially the models for
RTIs will have to be combined, while the PI models are independent to a greater or lesser
extent. Therefore, solving the inference of causality for RTI models can be avoided by
estimating models for combinations of RTIs directly. The challenges for a postprocessing
filter differ between the drug targets. The following two paragraphs describe the filtering
steps that were applied to remove most of the artifacts from the list of protease and
reverse transcriptase mutation rules. In the following the left side and right side of a rule
are denoted by Xl and Xr, respectively. The set of PIs and RTIs is denoted by Cpro and
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Crt, respectively, with C = Cpro ∪ Crt ∪ “empty′′. The set of all baseline and additional
mutations is denoted by Ebase and Eadd, respectively.

Protease Rules Filter: All rules containing RTV as the only PI are most likely artifacts
and are therefore filtered: |RTV∩Xl| = 1∧ |Cpro∩Xl| = 1; the first part of the expression
checks whether RTV is on the left side of the rule, while the second expression checks
whether there is only one PI listed on the left side of the rule. Moreover, since not all
regimens contain a PI, there are many transactions for the protease task that contain the
item “empty′′. These transactions represent pseudo-treatment breaks for the protease.
Rules with “empty” as only compound on the left side are interesting, since they provide
information on how resistance mutations disappear from the predominant viral population
when there is no selective pressure on the protease. For this task, however, these rules
constitute an artifact and have to be removed: |“empty′′ ∩ Xl| = 1. In the last step, all
Patterns (Xl ∪ Xr) that were not selected a sufficient number of times in the bootstrap
analysis were discarded.

Reverse Transcriptase Rules Filter: In a first step, all rules that only contain one drug
are discarded (|Xl ∩ C| = 1), this also includes the rare case of “empty” as the only listed
compound. In contrast, all rules comprising three or more drugs are retained (|Xl ∩Crt| >
2). Finally, all rules comprising exactly two RTIs have to undergo a further filtering
step. Briefly, if two drugs are said to cause a certain mutation, then there is the chance
that actually a third drug (not part of the rule) is the true cause. This case obviously
occurs when three drugs are frequently administered together. For example, Atripla is
available as a single pill and comprises three compounds, two NRTIs (FTC+TDF) and one
NNRTI (EFV). As a consequence one obtains the artifact rule {FTC, TDF} ⇒ {K103N}.
The mutation is clearly an NNRTI related mutation and therefore most likely caused by
EFV. Given a rule Xl ⇒ Xr containing exactly two drugs {c1, c2} = Xl ∩ Crt, then
E′base = Xl − {c1, c2} is the set of baseline mutations. The filter checks for every RTI
that is not part of the rule x ∈ Crt − {c1, c2} whether the rules {c1, x} ∪ E′base ⇒ Xr and
{c2, x}∪E′base ⇒ Xr exist. If for any drug x both rules exist and both exhibit a significantly
higher confidence than the original rule, then the original rule is discarded. For assessing
whether the difference in confidence is significant a t-test based on mean and standard
deviation of the confidence obtained from the bootstrap replicates can be applied. In
accordance with the protease filter, all patterns that were not selected a sufficient number
of times in the bootstrap analysis were discarded as well.

From Rules to Mutation Models

Applying the described filters with a bootstrap selection threshold of 20% for both sets
results in 1188 and 4541 (12,572 and 3861) rules for protease and RT, respectively, using
the 90 (720) days cutoff. These rules have two major advantages over the mutation scores
derived from in vitro measured resistance. Firstly, the rules reflect the mutation rates in
vivo, and secondly, the presence of baseline mutations on the left side of the rules allows to
model mutation rates in dependence of pre-existing mutations, rather than independently.

110% minimum selection threshold
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An interesting example for rules obtained with the 720 day cutoff is given by the rather
novel protease inhibitor tipranavir (TPV). The rule mining discovered three major TPV
related protease mutations 33F, 82T, and 84V, with probability 0.27, 0.63, and 0.38, respec-
tively. The mutation at position 82, however, does not occur from the wild type amino
acid (Valine), but from a mutant (Alanine) that was probably selected during previous
treatment with another PI. For this mutation there exist two rules in the list: {TPV}
⇒ {A82T} and {TPV, 82A} ⇒ {A82T} with confidence 0.28 and 0.63, respectively. For
constructing the mutation model one has to take into account that A82T is not a muta-
tion from wild type and therefore use the confidence of the rule listing the corresponding
baseline mutation on the left side.
While in theory one can construct transducers that represent mutation models with an

arbitrary number of baseline and additional mutations, their construction algorithm can
be rather complex. For instance, in order to model the mutation probability in presence
of baseline mutations, the mutation transducer must have a path that is different from the
two states in Figure 6.3 and comprises at the position of the baseline mutation only the
corresponding amino acid. Moreover, one has to distinguish between baseline mutations
that occur before and after the follow-up mutation in the sequence (regarding the alignment
position). For example, for extending the mutation transducer in Figure 6.4 with differences
in the mutation probability of position two in the presence of mutations at position one
or three, one has to introduce two new states (2 and 3). One new edge connects the
initial state with state 2, its input and output label is “PRO_1A” and the weight is equal
to the mutation probability of position 2 in presence of 1A. State 2 and the final state
are connected via an edge with input label and output label “PRO_2I” and “PRO_2C”,
respectively. The same labeling is used for the edge between the initial state and state 3.
Finally, state 3 is connected to the final state using an edge with input and output label
“PRO_3E” and has the altered mutation probability as weight. Moreover, in theory, states
2 and 3 need loop edges for all alignment positions between the baseline and the follow-up
mutation. As can be easily seen, the size of the transducer grows rapidly with respect to
the number of baseline mutations that are represented. For practical reasons we restrict
the transducer construction to rules that provide the probability of a single mutation, i.e.
|Xr| = 1, and with at most one baseline mutation. The construction algorithm is simplified
by the fact that for the vast majority of rules conf(Xl ⇒ Xr) ≤ conf(Xl ∪ E′base ⇒ Xr)
holds (see Figure 6.11 a)). Thus, one simply has to add an alternative path featuring the
elevated probability in addition to the normal mutation probability. In accordance with
in vitro mutation models we define mutation models derived from treatment data as

Md,m(p, a, a′) = max{conf({d,m} ⇒ {apa′}), conf({d,m, pa} ⇒ {apa′})},

where m is a single baseline mutation, and d is either a single drug (like above) or a
combination of drugs. Hence, for complete treatments we have

Mt,m(p, a, a′) =
∏
t′⊆t

Mt′,m(p, a, a′)−k,

with k = |{t′|t′ ⊆ t ∧Mt′(p, a, a′) 6= 0}|.
Figure 6.11 b) depicts a the number of rules per PI derived from the 720 days cutoff

dataset. The figure also clearly demonstrates the existence of a bias towards frequently
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(a) effect of baseline mutations (b) rules per protease inhibitor

Figure 6.11: Scatter plot between the probability for one mutation with and without the
presence of baseline mutations given the same drug (a). Final number of rules
for different protease inhibitors, different grey scales indicate the number of
baseline mutations in those rules (b). Both figures were derived from the
protease 720 days cutoff dataset.

used drugs that are obviously captured better by the model. For example, the majority of
rules describe mutation development under LPV/r containing treatments. Moreover, the
figure indicates that by restricting the mutation models to at most one baseline mutation
the majority of discovered rules is exploited (except for LPV).

6.4 Validation

Finding a validation scenario for an FDO score is a challenging task. In contrast to the
prediction of treatment response where one has the viral load as a direct measure, there
is no useful covariate in the HIV treatment databases, which necessarily has to correlate
with a good FDO. For instance, it is unlikely that a suboptimal choice regarding FDOs in
the first treatment will significantly shorten the patient’s life as so many other factors most
likely have a more observable impact, e.g. adherence. Moreover, the group of patients that
are followed from their first therapy till death is rather small and most likely did only have
very limited alternatives for the first treatment.

Nonetheless, there are possibilities for (at least) validating the mutation models alone.
The following two sections describe approaches for estimating the quality of the introduced
mutation models.
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6.4.1 Prediction of Response to the Next But One Treatment

In previous chapters we aimed at predicting the virological response to the patient’s up-
coming treatment. To this end we extracted retrospective treatment change episodes from
a database collecting routine treatment data. Then, statistical learning was used to cor-
relate information about the virus and the treatment to the patient’s virological response
to the antiretroviral combination treatment. The availability of a mutation models allow-
ing to evolve the viral population during a treatment makes a modification of this initial
setting possible. Knowing the genotype of a patient shortly before one treatment, one can
estimate the additional mutations at end of that treatment, and predict response to the
subsequent treatment based on this simulated genetic makeup of the viral population. This
scenario allows to study the impact of parameters of the mutation models. First, one can
study which mutation model provides the basis for the best predictions. Second, one can
study whether a fixed or a variable number of newly introduced mutations provides better
results. Third, one can assess the benefit of using the n-most likely results of the in silico
evolution over the single best variant. The following sections provide the experimental
setup, the results, and the discussion of this validation scenario.

Experimental Setup

Figure 6.12 illustrates the requirements for TCEs that are used for this validation. Briefly,
each TCE comprises two treatment changes. A genotype has to be available at most
90 days prior to the start of treatment A. In analogy to the EuResist standard datum
definition for assessing response to the treatment, a baseline viral load and follow-up viral
load have to be available at most 90 days before and about eight weeks (4 to 12 weeks)
after onset of treatment B, respectively. Application of this modified TCE definition to the
EuResist integrated database (release 2008/10/10) yields 1952 instances. A treatment
success is defined by suppressing the viral load below the limit of detection (400 copies of
viral RNA per ml blood) or achieving at least a 100-fold reduction compared to the baseline
value. Of note, the response to treatment A is of no interest, thus an instance is considered
successful if treatment B is a successful treatment. Using this definition, 1395 instances
are considered to be successful and 557 are considered treatment failures. The instances
selected for this validation overlap with the instances used for training the EuResist
prediction model. Precisely, 1428 TCEs and 350 TCEs of the EuResist training data
correspond to treatment A and treatment B, respectively. Since we predict neither the
response to treatment A nor use the real viral genotype obtained shortly before treatment
B for our predictions, we can consider this dataset as an independent test set.
Each of the sequences in the dataset was represented by a linear acceptor. Ambigui-

ties in the amino acid sequence were encoded as alternative edges between two states. In
a first step only those amino acids in ambiguities conferring the most resistance against
the current treatment were retained (using a rating transducer as in Figure 6.3). Then,
novel mutations were introduced into the sequence by applying all five mutation models
described above. The number of newly introduced mutations is a parameter. We follow
three strategies for setting the number of mutations. The first strategy introduced a fixed
number of mutations into each sequences and we vary this number from 0 to 10, with 0 rep-
resenting the reference model that does not introduce any mutation. The second approach
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Figure 6.12: Modified TCE definition. Every TCE comprises two treatments. The se-
quence had to be obtained at most 90 days before treatment A. A baseline
viral load measurement had to be available at most 90 days before treatment
B and a follow-up viral load measure had to be available within 4 to 12 weeks
after onset of the therapy. A TCE is successful if treatment B is successful,
i.e. viral load is reduced 100-fold or below 400 copies of viral RNA per ml
(limit of detection).

produces a number of mutations that depends on the composition of the antiretroviral
therapy. More precisely, the number of mutations is simply based on the average potency
of the regimen. Here, we use the instantaneous inhibitory potential (IIP) after 24 hours
of the maximal concentration of the drug in the plasma (IIP24) as defined by Shen et al.
(2008). The IIP24 ranges from 0 for d4T to 8.4 for DRV/r. The number of mutations
based on the average potency pot is computed by

n(pot) = dα · exp(1− pot)e, with α ∈ {1, . . . , 5}. (6.6)

If n(pot) is less than 1 or exceeds 10 mutations, then n(pot) is set to 1 or 10, respectively.
The parameter α controls the increase of mutations with the decrease of average potency.
The exponential function is used to realize a convex function.
The third strategy originates from the fact that an effective treatment gives the virus

fewer opportunities to mutate. Thus, the number of mutations is determined by the pre-
dicted success probability of treatment A (pA). Precisely, the number of mutations is
calculated as

n′(pA) = dα(exp(1− pA)− 1)e, with α ∈ {1, . . . , 5}. (6.7)

Again, the exponential function is applied for realizing a convex function.
Finally, we use a combination of potency and predicted success – the effect – for esti-

mating the number of mutations. Precisely, we apply Eqn. 6.6 to pot · pA instead of pot
alone.
For models with varying number of mutations we use two different baselines approaches.

The first approach generates a random number of mutations that is uniformly sampled
from 1 to 10 (randomA). The second method generates a random number of mutations
that follows the distribution of the pA-based model. This is achieved by randomly shuffling
the number of mutations computed with Eqn. 6.7 (randomB). For both random models
the provided performance measure is the mean of 100 repetitions.
For each of these models we compute the list of 10,000 variants receiving the highest

score according to the mutation model.
Our prediction model, which we contributed to the EuResist prediction engine (5.2), is

used to predict the response of the 10,000 most likely outcomes of the simulated evolution
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g2praw g2ptransition g2pmixed vivo90 vivo720

baseline 0.757
fixed number
1 0.757 0.764 0.762 0.749 0.757
2 0.749 0.755 0.756 0.743 0.756
3 0.724 0.735 0.741 0.738 0.750
4 0.702 0.714 0.725 0.728 0.735
5 0.694 0.699 0.710 0.718 0.721
6 0.692 0.690 0.696 0.710 0.711
7 0.690 0.674 0.683 0.703 0.705
8 0.687 0.660 0.671 0.697 0.701
9 0.686 0.651 0.660 0.693 0.696
10 0.684 0.645 0.651 0.689 n/a
dependent on current treatment composition
randomA 0.694 0.687 0.690 0.707 0.717
randomB 0.737 0.738 0.741 0.737 0.745
potency 0.759 0.768 0.768 0.757 0.764
success 0.766 0.767 0.768 0.755 0.765
effect 0.762 0.769 0.768 0.759 0.768

Table 6.1: Performance for different mutation models and mutation numbers measured in
AUC.

to the drugs in treatment B. The predicted success for treatment B is the weighted mean
of the top n of these 10,000 predictions

1∑n
j=i sj

n∑
i=1

sipi, (6.8)

where si and pi are the mutation score and the predicted success probability of the ith
variant, respectively. For g2praw si corresponds to the increase in resistance, and for all
other models si equals the real probability (not the negative decadic logarithm).

Results

Table 6.1 lists the AUC values that were achieved in this setting with all five mutation
models. None of the models manages to substantially improve over the baseline (no mu-
tations) and only subtle differences are visible between the mutation models. A general
trend is the decline of prediction performance with increased fixed number of mutations.
Consequently, the introduction of only one mutations provides the highest AUCs.
The introduction of a variable number of mutations depending on the treatment com-

position of regimen A provides a slight improvement over the baseline (no mutations).
Moreover, all three proposed ways of estimating the number of mutations improve substan-
tially over models generating a random number of mutations. Here, the uniform sampling
provides the worst results and is probably an underestimation of the baseline.
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Still, none of the mutation models paired with an approach to estimate the number of
mutations provides a substantial improvement over the baseline. One reason for this obser-
vation is doubtless the large fraction of treatments having a low success rate with respect
to regimen B even before regimen A caused changes in the viral population. Figure 6.13 a)
depicts the distribution of predicted success rate according to regimen B (pB) at baseline
for the viral sequence obtained before onset of regimen A. Interestingly, the distribution
resembles the one that can be expected for pA as seen in Figure 5.7 a). It becomes obvious
that a large number of treatments failing regimen B had a bad perspective of succeeding
even before regimen A was administered. Hence, the baseline of zero mutations is almost
insurmountable and little improvement is visible by the mutation models. For a fair com-
parison of the mutation models, the distributions of the predicted success rate in the failing
and succeeding groups should be identical for regimen B before onset of regimen A.

In order to have an ideal starting point for the validation of the mutation models, the
distribution of pB should be identical in failing and succeeding cases. Thus, for studying
a distribution of pB that is more similar in failing and succeeding cases, we applied a
threshold on pB and considered only cases exceeding that threshold. The cutoff was varied
from 0.0 (all cases) to 0.9 in steps of 0.1. Moreover, ambiguous failures (i.e. treatments
labeled as failure but achieving a VL reduction below 500 copies at least once during the
treatment; see Section 5.3) were removed for obtaining a more robust quality assessment.
Figure 6.13 c) displays the decline in AUC for increasing cutoffs of pB for the baseline
(no mutations), different mutation models with variable number of mutations based on
pA, and both random number of mutations models (using g2pmixed). This setting reveals
qualitative differences among the g2p-based mutation models and the mutation models
derived from treatment data. All three g2p-based models perform the best and achieve an
AUC of approximately 0.630 compared to the baseline of 0.547 at a pB cutoff of 0.8. At this
threshold, the vivo90 model is indistinguishable from the baseline with an AUC of 0.556,
while the vivo720 model reaches a slightly better AUC of 0.602 and places itself between the
baseline and the g2p-based models. The results also demonstrate the importance of linking
the right number of mutations to the right treatment. The performance of randomB is
very close to the baseline, while g2pmixed with pA-based number of mutations demonstrates
clearly superior prediction accuracy. Potency- or effect-based computation of the number
of mutations produces similar curves (data not shown). Of note, only 10 cases were labeled
as failure when the threshold of 0.9 was applied. Due to the low number of failing cases,
results obtained using the highest cutoff cannot be considered reliable. For instance, the
increase observed for both random models when moving from the 0.8 to the 0.9 cutoff are
most likely an artifact.

For investigating the impact of the number of most likely viral variants considered for
the computation of the success for the next but one regimen, we chose the pB cutoff of 0.8,
the g2pmixed model, pA-based number of mutations, and varied the number of considered
in silico variants: {1, 10, 100, 1000, 10000}. Figure 6.13 b) depicts the corresponding ROC
curves. Clearly, it is beneficial to consider more than the single most likely variant: the
top 10 yield already an improvement of 0.03 in AUC. Nevertheless, no improvement was
observed beyond the top 1000, which increased the AUC by 0.051 compared to the single
most likely variant.
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Figure 6.13: (a) Distribution of pB before onset of regimen A in failing treatments (red)
and successful treatments (green). (b) Change of AUC depending on the
considered top n viral variants. AUC computed with g2pmix mutation model
at cutoff 0.8 using. (c) Development of AUC after restricting the data in terms
of pB. Apart for the random models, the number of mutation was based on
pA.



6.4 Validation 145

Discussion

The results demonstrated that it is possible to infer response to the treatment following
the next treatment on the basis of the current genotype. Unfortunately for our validation,
the baseline (i.e. no additional mutations) provided already a very good prediction perfor-
mance. Indeed, the performance was close to AUC values observed for predicting response
to the next antiretroviral regimen (see results in Chapter 5). The high performance was
the result of a large number of cases that had bad perspectives for succeeding with regimen
B even before regimen A caused additional mutations. Consequently, the mutation models
showed only little improvement.
A scenario that is more suitable for assessing the quality of the mutation models is

the separation of failing and succeeding regimens that had the same (or at least similar)
distribution of success rate pB before the onset of regimen A. Here, mutations selected by
regimen A are the cause for the later failure, and the mutation models should allow for a
separation. The removal of all instances with pB below a certain cutoff served as way for
matching the distributions of pB in successful and failing regimens.

The altered scenario revealed differences between mutation models: g2p-based models
generally outperform the models estimated from treatment data. Moreover, the importance
of assigning the right number of mutations to the treatments was made evident and we
could demonstrate a clear improvement over the baseline (no mutations). Of note, the
performance of the baseline can be seen as a measure of dissimilarity of the distribution of
pB in both groups (if the distributions were identical, then the baseline would achieve an
AUC of 0.5).

6.4.2 Comparing Predicted Future Drug Options to Data From Real Cases

The second validation scenario aims at comparing predicted future drug options after a
treatment to real future drug options observed at treatment failure in patients. In order
to avoid problems with archived drug resistance mutations in patients, which had already
received antiretroviral therapies, this scenario is restricted to treatment naïve patients.
That restriction has another advantage, as it allows us to assume that the virus before
the treatment is a wild type virus and therefore we only need to retrieve sequences of the
patient at end of the first treatment serving for the computation of future drug options.
Consequently, this maximizes the amount of available data for this analysis. The simplifi-
cation bears also one risk: by assuming that a patient was infected with a wild type virus,
we ignore the existence of conferred drug resistance mutations.

Validation Setup

The EuResist database was queried for HIV genotypes that were obtained during the
first treatment the patient ever received. More precisely, the sequence comprising RT
and protease had to be obtained 30 days after start earliest and 14 days before stop of
the treatment latest, respectively. As argued earlier (Section 4.2), the ability to sequence
the virus while the patient is on antiretroviral treatment indicates virological failure. In
order to ensure that the patient indeed received the first treatment, it was required that all
treatments, which the patient had ever received, were stored in the database. Table 6.2 lists
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all antiretroviral treatments that met the requirements and occur at least three times. For
all sequences fold-change in resistance against 17 drugs was computed with geno2pheno
and the activity score for each drug was determined (Section 3.2). The FDO was simply
defined as the sum of the activity for all 17 drugs, thus the FDO was in the range of [0, 17].
In addition to the FDO for all drugs, drug class specific FDOs were calculated.
Unfortunately, a number of sequences (about 5.9%) suggested complete resistance against

a large number of drugs from all classes. Given that the sequences were obtained at the
end of the first antiretroviral treatment, this was an unexpected result and most likely orig-
inates from faulty entries in the database or cases of transmitted drugs resistance. Hence,
we excluded all cases that exhibit an FDO score of 5.0 or less from the analysis. Table 6.3
lists FDO and drug class wise FDO after removal of the cases.
Predictions for the FDOs were generated by constructing a linear acceptor representing

the consensus B wild type sequence. Then, for every treatment listed in Table 6.3 a
mutation model was used to introduce a fixed number of mutations (1 to 10), and the 10,000
variants receiving the highest mutation score were stored. For simplicity, the mutation
model was restricted to g2pmixed, which also ranked among the best models in the previous
setting. Next, for all predicted variants the FDO was computed. The consensus FDO of
the (at most) 10,000 variants was computed using a weighted mean (see Eqn. 6.8).
Finally, we correlated the predicted FDOs with the observed FDOs. Here, however, the

number of mutations that have to be introduced into the wild type sequence is unknown.
Thus, to get an upper estimate on the prediction performance we selected the number of
mutations for each treatment that best fits the observed value (best fit). In addition, we
used a crude heuristic for estimating the number of mutations (manual): the number of
mutations to be introduced is 2, treatments containing boosted PIs introduce one mutation
less, treatments with less than 3 drugs one mutation more, and so do treatments containing
the combination d4T+ddI.

Results

Table 6.4 lists the obtained correlation for a varying number of top N most likely viral
variants. For the best fit approach the correlation steadily increases with larger viral
population and reaches up to 0.951 for the full list of 10,000 variants. Using the crude
manual heuristic for inferring the number of mutations the correlation between predicted
FDO and actual FDO decreases to approximately 0.570.
Figure 6.14 shows scatter plots of the real FDO against the predicted FDO using the

100 most likely variants. A surprising observation is that using the best fit approach a
small number of mutations is sufficient to achieve a high correlation with the observed
values. Precisely, the majority of treatments are best modeled when only one, two, or
three mutations are introduced. In order to verify whether the drug classes are correctly
modeled, we correlated the observed class specific FDO to the predicted class specific FDO.
Here, we used the number of mutations determined with best fit approach on the FDO
for all drugs. The correlations was very high for NRTIs and NNRTIs, reaching 0.809 and
0.796, respectively. The PIs, however, showed with 0.407 only an acceptable correlation. A
confounder of the FDOs for PIs are treatments that did not contain any PIs. Consequently,
removal of non-PI treatments elevated the correlation to 0.599. Figure 6.14 c) shows the
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drug combination count all NRTI NNRTI PI
ZDV 100 13.94 (3.39) 4.80 (2.21) 2.66 (0.69) 6.49 (1.70)
ddC+ZDV 44 14.13 (3.17) 4.83 (2.33) 2.82 (0.32) 6.49 (1.63)
3TC/FTC+ZDV 40 13.01 (2.49) 3.49 (2.13) 2.64 (0.77) 6.88 (0.34)
3TC/FTC+LPV+ZDV 38 15.55 (1.97) 6.17 (1.30) 2.88 (0.24) 6.50 (0.99)
3TC/FTC+NFV+ZDV 38 10.70 (3.99) 3.67 (1.63) 2.64 (0.69) 4.38 (2.60)
3TC/FTC+NVP+ZDV 34 13.11 (3.13) 4.60 (2.07) 1.63 (1.23) 6.88 (0.25)
3TC/FTC+IDV+ZDV 31 13.42 (3.39) 5.04 (1.80) 2.83 (0.27) 5.55 (2.27)
3TC/FTC+EFV+ZDV 24 12.17 (4.77) 4.62 (2.32) 1.48 (1.39) 6.07 (1.95)
3TC/FTC+LPV+TDF 23 14.15 (4.82) 5.94 (1.80) 2.38 (1.01) 5.83 (2.35)
3TC/FTC+ABC+ZDV 20 12.01 (3.13) 2.60 (2.60) 2.68 (0.77) 6.73 (0.72)
ddI+ZDV 20 12.74 (2.59) 3.23 (2.24) 2.55 (0.88) 6.97 (0.06)
3TC/FTC+SQV+ZDV 19 12.09 (3.61) 3.82 (1.90) 2.76 (0.67) 5.51 (2.36)
3TC/FTC+d4T+NFV 15 10.37 (4.89) 3.44 (2.34) 2.89 (0.18) 4.03 (2.87)
3TC/FTC+EFV+TDF 11 11.65 (5.42) 4.47 (2.44) 1.67 (1.44) 5.52 (2.18)
3TC/FTC+d4T 11 11.39 (1.67) 2.02 (1.24) 2.53 (0.86) 6.84 (0.34)
d4T+ddI+NFV 9 10.58 (4.31) 3.07 (2.29) 2.89 (0.07) 4.62 (2.80)
3TC/FTC+d4T+EFV 7 13.04 (2.10) 5.02 (1.74) 1.64 (1.24) 6.38 (1.02)
3TC/FTC+d4T+NVP 7 14.38 (2.73) 5.85 (1.48) 1.62 (1.50) 6.91 (0.15)
ddC+SQV+ZDV 7 14.62 (2.59) 5.32 (1.73) 2.86 (0.19) 6.43 (1.27)
3TC/FTC+d4T+SQV 6 9.25 (4.44) 2.16 (1.79) 2.96 (0.03) 4.12 (3.29)
d4T+ddI+EFV 6 12.12 (3.62) 5 (2.35) 0.66 (1.19) 6.46 (1.17)
3TC/FTC+APV/FPV+TDF 5 12.65 (6.95) 4.95 (2.88) 2.11 (1.21) 5.60 (3.13)
3TC/FTC+ATV+TDF 5 13.59 (2.58) 4.78 (1.59) 2.97 (0.04) 5.84 (1.60)
3TC/FTC+ABC+LPV 4 15.46 (2.26) 5.96 (1.59) 2.81 (0.22) 6.69 (0.47)
3TC/FTC+d4T+IDV 4 12.69 (5.34) 4.79 (2.36) 2.93 (0.09) 4.97 (3.35)
3TC/FTC+d4T+LPV 4 13.38 (6.31) 5.41 (2.98) 2.72 (0.52) 5.25 (3.50)
d4T+ddI 4 9.90 (3.58) 3.43 (2.74) 2.98 (0.02) 3.48 (4.02)
d4T+ddI+NVP 4 11.25 (2.72) 4.48 (2.42) 0.86 (1.44) 5.91 (2.16)
ddI+NVP+ZDV 4 11.60 (2.42) 2.88 (1.68) 1.79 (0.97) 6.92 (0.15)
3TC/FTC 3 12.57 (0.39) 3.23 (0.39) 2.85 (0.25) 6.49 (0.88)
3TC/FTC+NVP+TDF 3 13.95 (3.92) 5.39 (2.55) 1.96 (1.70) 6.60 (0.42)
d4T+ddI+IDV 3 14.28 (2.22) 5.59 (1.30) 1.69 (1.53) 7 (0.00)
d4T+ddI+SQV 3 10.56 (5.78) 3.72 (2.98) 2.96 (0.04) 3.88 (3.48)
ddI+EFV+TDF 3 9.15 (4.99) 4.89 (1.60) 0.00 (0.00) 4.26 (3.41)

Table 6.2: First line antiretroviral treatments and observed future drug options (FDO).
The column count states the sample size that served to estimate the FDO.
The column all, NRTI, NNRTI, and PI state the FDOs for all drugs, NRTIs,
NNRTIs, and PIs, respectively. Values are the mean among all observed cases
and standard deviation is state in parenthesis.
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drug combination count all NRTI NNRTI PI
ZDV 95 14.47 (2.55) 4.98 (2.10) 2.67 (0.69) 6.82 (0.87)
ddC+ZDV 43 14.39 (2.70) 4.94 (2.24) 2.81 (0.33) 6.64 (1.31)
3TC/FTC+ZDV 40 13.01 (2.49) 3.49 (2.13) 2.64 (0.77) 6.88 (0.34)
3TC/FTC+LPV+ZDV 38 15.55 (1.97) 6.17 (1.30) 2.88 (0.24) 6.50 (0.99)
3TC/FTC+NVP+ZDV 34 13.11 (3.13) 4.60 (2.07) 1.63 (1.23) 6.88 (0.25)
3TC/FTC+NFV+ZDV 33 11.75 (3.06) 4.04 (1.41) 2.70 (0.57) 5.01 (2.17)
3TC/FTC+IDV+ZDV 30 13.71 (3.05) 5.10 (1.79) 2.87 (0.20) 5.74 (2.06)
3TC/FTC+EFV+ZDV 22 13.24 (3.26) 5.01 (1.99) 1.61 (1.38) 6.62 (0.64)
3TC/FTC+LPV+TDF 21 15.39 (2.62) 6.40 (0.97) 2.60 (0.72) 6.38 (1.54)
3TC/FTC+ABC+ZDV 20 12.01 (3.13) 2.60 (2.60) 2.68 (0.77) 6.73 (0.72)
ddI+ZDV 20 12.74 (2.59) 3.23 (2.24) 2.55 (0.88) 6.97 (0.06)
3TC/FTC+SQV+ZDV 18 12.55 (3.06) 3.83 (1.95) 2.91 (0.14) 5.81 (2.01)
3TC/FTC+d4T+NFV 12 11.95 (4.08) 4.28 (1.78) 2.87 (0.20) 4.80 (2.68)
3TC/FTC+d4T 11 11.39 (1.67) 2.02 (1.24) 2.53 (0.86) 6.84 (0.34)
3TC/FTC+EFV+TDF 10 12.79 (4.09) 4.89 (2.11) 1.83 (1.40) 6.07 (1.25)
d4T+ddI+NFV 8 11.41 (3.77) 3.34 (2.28) 2.88 (0.07) 5.18 (2.37)
3TC/FTC+d4T+EFV 7 13.04 (2.10) 5.02 (1.74) 1.64 (1.24) 6.38 (1.02)
3TC/FTC+d4T+NVP 7 14.38 (2.73) 5.85 (1.48) 1.62 (1.50) 6.91 (0.15)
ddC+SQV+ZDV 7 14.62 (2.59) 5.32 (1.73) 2.86 (0.19) 6.43 (1.27)
d4T+ddI+EFV 6 12.12 (3.62) 5 (2.35) 0.66 (1.19) 6.46 (1.17)
3TC/FTC+ATV+TDF 5 13.59 (2.58) 4.78 (1.59) 2.97 (0.04) 5.84 (1.60)
3TC/FTC+ABC+LPV 4 15.46 (2.26) 5.96 (1.59) 2.81 (0.22) 6.69 (0.47)
3TC/FTC+APV/FPV+TDF 4 15.67 (1.89) 6.18 (0.96) 2.49 (0.99) 7 (0.00)
3TC/FTC+d4T+SQV 4 11.93 (1.97) 2.90 (1.76) 2.96 (0.04) 6.07 (1.68)
d4T+ddI 4 9.90 (3.58) 3.43 (2.74) 2.98 (0.02) 3.48 (4.02)
d4T+ddI+NVP 4 11.25 (2.72) 4.48 (2.42) 0.86 (1.44) 5.91 (2.16)
ddI+NVP+ZDV 4 11.60 (2.42) 2.88 (1.68) 1.79 (0.97) 6.92 (0.15)
3TC/FTC 3 12.57 (0.39) 3.23 (0.39) 2.85 (0.25) 6.49 (0.88)
3TC/FTC+NVP+TDF 3 13.95 (3.92) 5.39 (2.55) 1.96 (1.70) 6.60 (0.42)
3TC/FTC+d4T+IDV 3 15.30 (1.38) 5.76 (1.63) 2.91 (0.10) 6.63 (0.62)
3TC/FTC+d4T+LPV 3 16.53 (0.63) 6.90 (0.05) 2.63 (0.59) 6.99 (0.01)
d4T+ddI+IDV 3 14.28 (2.22) 5.59 (1.30) 1.69 (1.53) 7 (0.00)

Table 6.3: First line antiretroviral treatments and observed future drug options (FDO).
The column count states the sample size that served to estimate the FDO.
The column all, NRTI, NNRTI, and PI state the FDOs for all drugs, NRTIs,
NNRTIs, and PIs, respectively. Values are the mean among all observed cases
and standard deviation is state in parenthesis.
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top N 1 10 100 1,000 10,000
best fit 0.784 0.876 0.907 0.943 0.951
manual 0.148 0.351 0.561 0.588 0.572

Table 6.4: Pearson correlation between predicted and actual FDOs. Top N indicates how
many most likely variants were used for computing the predicted drug options.
The two methods for finding the number of mutations to be introduced are best
fit and manual.

(a) 100 variants (best fit) (b) 100 variants (manual) (c) 100 variants protease (best fit)

Figure 6.14: Scatter plot between real FDO and predicted FDO using 100 most likely
variants. FDO for all 17 drugs, and the number of mutations was set using
the best fit approach (a) or the manual heuristic (b). FDO for PIs only, the
number of mutations was set using the best fit approach on all 17 drugs (c).

corresponding scatter plot for only PI containing regimens.

Discussion

The best fit approach explains the future drug options very well, while requiring only a
small number of additional mutations for the majority of treatments to explain the observed
FDO value. Moreover, the best fit (in terms of mutations) regarding the FDO of all drugs
reflects also the class-wise FDOs with correlations raging from 0.599 to 0.809, indicating
that the underlying mutation model reflects the resistance development in the different
drug targets in vivo to a satisfying extent.
Indeed, the measured FDOs exhibit a high variance themselves, most likely owing to

differing treatment lengths, differing patient adherence, and also differing mutations in
the virus preexisting at treatment start. Clearly, these sources of uncertainty add to
the difficulty of fitting a single FDO to a single drug combination. Consideration of the
other factors, however, would either lead to overfitting the model to the noisy data (e.g.
introduction of a treatment length parameter) or unreliable estimations of the FDOs due to
low sample numbers (e.g. requirement of baseline genotype). Moreover, for other external
factors like adherence no data are available.
We made a further assumption which does certainly not hold: every patient started

with a wild type consensus B virus. As can be seen from the first extraction of data from
the database, a substantial number of cases showed an FDO of 5.0 or less and, therefore,
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were excluded from the analysis. Moreover, also the cleaned set of instances contains
unlikely post-treatment FDOs. For instance, patients treated with ddI+d4T only have
only 3.5 active PIs at treatment failure, on average. A change in FDO among PIs after
a PI-less combination therapy can only be explained by either preexisting drug resistance
mutations or errors in the database, e.g. the treatment contained a PI or stop date of the
first treatment is incorrect and the genotype was actually obtained during the following
PI-based regimen.
The best fit estimation clearly serves as an upper bound of the model performance. De-

spite the many sources of uncertainty originating from the gold standard, i.e. the real data,
the model explains the observations using only few mutations. And, most importantly, the
resistance development in the different drug classes is captured well. Thus, the mutation
model provides the means to simulate resistance development in antiretroviral combination
treatments, an essential basis for the sequencing of treatments.

6.5 Remarks

We introduced five different mutation models together with a framework for quickly sim-
ulating resistance development in HIV against combination treatments. The mutation
models demonstrated, to varying extent, that prediction of response to the one after next
regimen can be achieved at moderate performance. Moreover, a second validation setting
showed that observed future drug options can be explained using one of the models (g2pmix)
by the introduction of only few mutations. Here, the overall resistance development was
reflected well by resistance development within drug classes.
A crucial variable contributing to success and failure of the model is the number of

mutations that are introduced by a treatment. The amount of mutations depends on a
range of parameters, including activity of the regimen, potency of the drugs in the regimen,
duration of the regimen, and the patient’s adherence to the regimen. The exact number
is therefore hard to estimate. Within the first validation setting, we explored different
functions to infer a suitable number of mutations based on activity and potency of the
regimen. These approaches showed an improved behavior compared to the introduction of
a fixed number of mutations. However, there is clearly room for further improvements, for
instance by functions based on adherence of the patient. Of note, inferring the number of
mutations from the duration of the regimen alone is not likely to succeed. For example,
one can expect that a long treatment duration results in a higher number of mutations.
But, on the other hand, a long duration indicates good compliance of the patient and, as
a consequence, a sustained treatment success resulting in only few mutations. Thus, only
a measure of patient adherence paired with treatment length is likely to succeed.
The introduced model can still provide insight on how to sequence treatments even when

the number of mutations is unknown. More precisely, one can observe the development of
the estimated success probability of potential nth line treatments with respect to (n−1)th
line regimen. For instance, on a Dual-Core AMD OpteronTM processor with 2.6 GHz and
32 GB memory, the simulation from 1 to 10 additional mutations including storage of
the 1,000 most likely variants takes approximately 35 seconds. The interpretation of all
variants using the EV EuResist engine requires (due to suboptimal implementation for
this task) another 70 seconds. Furthermore, the framework for simulating the evolution is
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easily scalable and one can achieve further speedup by limiting the number of variants (6
seconds with 100 variants instead of 1000), the number of different mutations (17 seconds
with 5 mutations instead of 10) or a combination of both (3 seconds). Hence, we reached
a computational performance that enables the construction of web services. Such a service
might allow to upload the sequence of a patient isolate as well as the selection of a few
potential treatments and possible follow-up regimens. As a result the service will provide
the change in treatment options (using different measures) as a consequence of the selected
regimen. In the following we provide a case-study of four typical first-line treatments using
three different measures for future treatment options.
Figure 6.15 depicts the development of four different regimens (different colors) in re-

sponse to two potential first-line regimens (different line styles) in terms of PSS (a) and
predicted success by the EV EuResist engine (b). The simulation started with a con-
sensus B wild type sequence, up to 10 mutations were introduced and the 1,000 most
likely variants were analyzed. Figure 6.15 a) reveals that up to six mutations there
is no difference for TDF-containing regimens (black and green) whether the preceding
treatment contained TDF or ZDV. For the ZDV-containing regimens, however, the TDF-
containing pre-treatments exhibit a higher score (around 0.3). Hence, first using TDF
and then ZDV seems to be a better choice. Also the analysis in terms of estimated suc-
cess probability (Figure 6.15 b) demonstrates that the use of 3TC+ZDV+LPV provides
a slightly worse perspective for future regimens than administration of 3TC+TDF+LPV
(i.e. all dashed lines are below solid lines of same color). The benefit of 3TC+TDF over
3TC+ZDV in terms of resistance at treatment failure is well recognized in the medical
community, and indeed, TDF-containing regimens are suggested for first-line regimens
(http://www.aidsinfo.nih.gov/Guidelines/). The advantage of TDF is that it selects
for the mutation K65R, which causes hypersusceptibility of ZDV and other NRTIs (Parikh
et al., 2006). Of note, also the applied mutation model assigns a high probability to the
appearance of K65R during TDF treatment (see Figure 6.7). The simulation of both treat-
ments (including interpretation) took approximately 3.5 minutes (using only the 100 most
likely variants the computational time is reduced to 30 seconds, while maintaining the
same qualitative result).
Instead of studying the development of the predicted success rate for a set of fixed regi-

mens, one can also focus on resistance against individual drugs. For instance, Figure 6.16
shows the decrease in FDO as response to the same four drug combinations. By inspecting
the FDO for all drugs no difference between the use of TDF or ZDV is visible. When fo-
cusing on the FDO in the class of NRTIs, however, the inferiority of ZDV becomes evident,
as there is a difference of approximately half a drug with four and five mutations.
Concluding, the transducer-based framework provides the computational means for effi-

ciently simulating resistance development during anti-HIV therapy, and thereby allows the
search for optimal orderings of antiretroviral therapies. The computational performance
can be even further increased by using the C++ interface instead of the command-line
tool; the latter requires to store transducers on the hard drive, while the former allows to
store transducers in the main memory and therefore avoid the I/O overhead. Furthermore,
the mutation models, on which are simulation depends, can also be based on expert-based
rating systems, as opposed to geno2pheno. Likewise, depending on the users’ preference
the used rating scheme for computing FDOs can be based on expert-based systems.

http://www.aidsinfo.nih.gov/Guidelines/
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(b) success probability

Figure 6.15: Development of geno2pheno PSS (a) and predicted success probability (b)
of four different regimens (different colors) after treatment with two typical
first-line regimens (different line styles)

6.6 Discussion

Transducers provide a solid framework for simulating development of resistance mutations
in HIV. The problem of finding the most likely viral variant, which may emerge during a
combination therapy, is modeled as a shortest path problem, in which edge costs are related
to the probability of single mutations to emerge during treatment. Due to the applica-
tion of transducers in the domain of natural language processing (e.g. spoken language
recognition and text translation) a number of free and efficient implementations of algo-
rithms that are based on transducers are available. Moreover, the transducer framework
can easily be scaled to the available computational hardware. For instance, the number
of mutations to be added, the number of most likely viral variants to be tracked, and the
amino acid positions of the HIV sequence to be considered (positions have to be simply
omitted from the linear input acceptor representing the baseline sequence) can be adapted
without modifying the mutation models.
Most importantly though, transducers allow to easily implement different mutation mod-

els. In addition to the models presented here, mutation models based on Hidden Markov
Models (HMMs) can be realized (see for instance Healy and Degruttola (2007)). The ca-
pability of representing HMMs follows from the fact that weighted finite state transducers
comprise output labels and weights which can be used to model observation (emissions of
the HMM) and probabilities for transitions and emissions, respectively.
A major drawback of using transducers for implementing mutation models is the practi-

cal requirement to model mutations independently from each other. That is, each mutation
will lead to the same increase in total path cost; independent of the mutations that are
already present in the genotype. In theory it is possible to construct mutation transduc-
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Figure 6.16: Change of future drug options (FDO) as response to four typical first-line
treatments. The panels depict the FDO for all drugs (top left), NRTIs (top
right), NNRTIs (bottom left), and PIs (bottom right).

ers that implement mutation scores that are dependent on present mutations; however,
these transducers are complicated to construct, and the results are in general very large
automata (i.e. many additional states and edges are required to represent alternative paths
that go along preexisting mutations). Of course, large transducers increase the required
computation time (and the I/O overhead).

Another method that takes preexisting mutations into account is the approach intro-
duced by Deforche et al. (2008) for estimating in vivo viral fitness landscapes. Here, a
Bayesian network model for an individual drug is trained on viral sequences that were
obtained during treatment with that drug. This network is used to capture interactions
between mutations. Furthermore, in a second training phase the conditional probabilities
of the Bayesian network are replaced with conditional fitness contributions of each mu-
tation. This fitness function is applied together with a simple finite ideal Wright-Fisher
population model (Wright, 1931) for simulating the resistance development in the viral
population during anti-HIV treatment. However, the approach has to model and simu-
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late the resistance development for each viral variant in the population (Deforche et al.
(2008) used a population size of 104), and is therefore likely not to meet the computational
demands for an interactive system.
The major problem for all approaches is the estimation of mutation models for drug

combinations instead of individual drugs. For instance, longitudinal in vivo data is usually
scarce (see Figure 6.8); the available data decreases even further when one is restricted
to a single drug combination. Thus, constructing models for individual drugs is likely
to achieve more robust models. Estimation of such models from in vivo data, however,
is problematic since drugs are given in combination and the causal inference between
drugs and emerging mutations is hard to solve. In the end, the most stable approach is
the estimation of mutation models for individual drugs from in vitro data followed by a
combination approach to realize models for drug combinations.
Finally, another possibility for finding sequences of beneficial drug combinations is to

omit the explicit resistance development in the viral population and directly learn from
the sequences of combination therapies in the patients’ pasts. For instance, one can fo-
cus on the success of a treatment given the N − 1 preceding combinations. We recently
investigated such an N -gram graph of therapy sequences as an potential encoding for a
patient’s therapy history (Müller, 2008). Unfortunately, only few treatment sequences oc-
curred sufficiently often. However, it cannot be excluded that with the significantly larger
EuResist integrated database, which is available today, and a more elaborate statistical
learning method (or encoding of therapy sequences) information about beneficial orders of
drug combinations can be extracted without explicitly simulating the viral population.
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Current treatment options do not provide a cure to HIV infections. Hence, the ultimate
solution to the HIV pandemic is to prevent further infections. One established instrument
for preventing infections are vaccines, and therefore the development of a successful HIV
vaccine is of major interest today. In this chapter we will present a bioinformatics approach
to aide the search for immunogens that elicit broadly neutralizing antibodies against HIV.
In Section 7.1 we will very briefly summarize the major elements of the immune system
and the molecular basis of immunity conferred by vaccination. This is followed by a short
overview on HIV vaccine research, including a focus on the viral spike (gp160), which is the
target for neutralizing antibodies (Section 7.2). Section 7.3 focuses on predicting antibody-
mediated neutralization from gp160 genotype based on statistical models. These models are
also used to identify features of gp160 that increase susceptibility to neutralizing antibodies.
This knowledge will be used to find gp160 variants that can be used as immunogens in a
successful HIV vaccine. Section 7.4 concludes the chapter with an outlook.

7.1 The Immune System and Vaccines

In the following we provide a brief overview on the immune system based on DeFranco
et al. (2007). The immune system of an organism is organized as a layered defense. The
first layer comprises physical barriers (e.g. shells, skin) and mechanical mechanisms (e.g.
coughing, sneezing). Once a pathogen manages to surmount the first line of defense, it
faces mechanisms of the innate immune system and the adaptive immune system, where
the latter one is a characteristic of jawed vertebrates.

Innate Immune System

The cells and molecules of the innate immune system recognize features that are con-
served across broad groups of pathogens. This system reacts to pathogens in a generic
(non-specific) way and it confers neither long-lasting immunity nor increased efficacy after
previous exposure to a pathogen. The innate immune system includes different defense
mechanisms: humoral and chemical barriers of the innate system include inflammation
and the complement system. Inflammation is a process for recruiting immune cells to
the sites of infection; it is produced by eicosanoids and cytokines that are released by in-
jured or infected cells. The complement system consists of about 30 serum and membrane
proteins that can trigger a variety of immune reactions by a biochemical signal cascade.
Furthermore, the innate response depends on a range of leukocytes (white blood cells). A
major subgroup of leukocytes comprises phagocytes, which act by engulfing particles or
pathogens: the pathogen is trapped in a vesicle and subsequently “destroyed” by digestive
enzymes. Dendritic cells and macrophages (a type of phagocyte) present parts of the di-
gested pathogen on their surface. These antigens (antibody generators) bridge the gap
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to the adaptive immune system by triggering the response of T cells and B cells, which
constitute the main building block of the adaptive immune system.

Adaptive Immune System

T cells and B cells belong to the group of lymphoctytes, a special type of leukocytes. T cells
are involved in a cell-mediated immune response, whereas B cells are part of the humoral
response. Both T and B cells carry receptor molecules that recognize only specific targets,
and each cell produces only one type of antigen-recognizing receptor. T cells are divided
into two subgroups: killer or cytotoxic T cells and helper T cells. T cells only respond to
antigens that are bound to a protein of the major histocompatibility complex (MHC), killer
T cells (CD8+ T cells) require antigens coupled to Class I MHC molecules, whereas helper
T cells (CD4+ T cells) rely on Class II MHC molecule-antigen complexes. As their name
suggests cytotoxic T cells release substances, which are toxic for cells (cytotoxins), and
thereby directly kill infected (e.g. by viruses) and damaged or dysfunctinal (e.g. cancer)
cells. Helper T cells activate other cells of the immune system and thereby regulate both
the innate and adaptive immune responses. For instance, helper T cells stimulate killer
T cells and enhance the microbicidal function of macrophages. Moreover, helper T cells
also activate B cells to produce neutralizing antibodies. Both helper and killer T cells
originate from naïve T cells, and the required proliferation into effector T cells is mediated
by the dendritic cells from the innate immune system. Naïve B cells carry B cell antigen
receptors (BCR) on their surface that contain immunoglobulins (antibodies). Once the
BCR binds to its specific antigen (e.g. a virus surface protein) the complex undergoes
endocytosis. The antigen is cleaved into small peptides that are presented by Class II
MHC molecules on the surface of the cell. After recognition and subsequent activation
by a helper T cell the B cell becomes activated and undergoes differentiation into an
effector B cell that secretes copies of exactly the antibody, which recognized the antigen.
Antibodies can directly inactivate (neutralize) pathogens by binding to its surface proteins
that are used to infect target cells or to toxins secreted by bacteria. In addition, bound
antibodies mark their target for destruction by the innate immune system, i.e. complement
activation or processing by phagocytes. In principle, only antigens that can be recognized
by the preexisting pool of B cells can trigger an immune response. However, on successful
activation, the antigens produced by B cells undergo a process termed affinity maturation
in which somatic hypermutations lead to modified binding affinities of the antibody to the
antigen, and antibodies with higher affinity are selected. In contrast to the innate immune
system, the adaptive immune system maintains specific cells targeting specific pathogens,
or more precisely: specific antigens. Moreover, an immunologic memory is established by
offsprings of T and B cells that begin to replicate after activation. These memory cells can
survive for decades and therefore the immune system is prepared for a challenge with the
same pathogen or more precisely by pathogens presenting the same antigens.
The aim of a vaccine is to induce immunity against a pathogen, that is, invoking a

strong immune response against the pathogen upon recognition. While the main goal of a
vaccine is to achieve sterilizing immunity (complete protection from infection), it is often
sufficient to substantially reduce the amount of active pathogens in the host and therefore
limit disease-related symptoms. Protection against a pathogen is elicited by challenging
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the adaptive immune system with adequate antigens that are able to trigger a response
by the immune system and consequently establish the immunologic memory in the form
of T and B cells.
An immune response can be triggered by mild versions of the pathogen that usually do

not cause the disease (live attenuated vaccines), by killed pathogens (inactivated vaccines),
or by parts of the pathogens (compound vaccines) (Plotkin, 2005). The general idea is to
mimic an attack by the pathogen and thereby create the immunity that would be naturally
established after the real challenge. In general, the more similar the immunogen comprising
the vaccine is to the real pathogen, the better and longer lasting is the protection by
the vaccines. Hence, live attenuated vaccines are more effective than inactivated vaccine,
which, in turn, are more effective than compound vaccines (Lambert et al., 2005). For
instance, multiple shots of the new hepatitis B vaccine (a compound vaccine) are required
to establish immunity. Inactivated and compound vaccines, however, are safer than live
attenuated vaccines, since they are incapable of causing the disease.
Most of today’s successful vaccines rely on the establishment of memory B cells and

therefor on the rapid generation of matching neutralizing antibodies (nAbs) upon a chal-
lenge by the pathogen. Vaccines are a major instrument for controlling diseases, and since
the introduction of the first vaccine against smallpox in 1798, smallpox have been eradi-
cated and other pathogens have almost disappeared. Today, vaccination is extended from
infectious to noninfectious diseases (immunotherapy). Among the infectious diseases HIV,
malaria, and tuberculosis are still of leading interest, while research in the area of nonin-
fectious diseases currently focuses on various types of cancer, autoimmune diseases (e.g.
multiple sclerosis), atherosclerosis, and Alzheimer’s disease (Plotkin, 2005).

7.2 Vaccines and HIV

After identification of the pathogen that causes AIDS, researchers expected to have a
vaccine within a few years. Indeed, on April 23 in 1994 Magaret Heckler (then U.S. Health
Secretary) proclaimed publicly that a vaccine candidate will be available for testing within
two years (Walker and Burton, 2008). Now, 28 years after the discovery of HIV there
is still no vaccine. Even worse, there is not even a promising candidate in close sight.
The challenges that researchers are facing during the development of an HIV vaccine are
manifold: First, HIV is extremely diverse, which makes it hard to identify conserved
epitopes, and due to the error-prone replication process HIV can quickly evade the immune
response by mutating epitopes that are recognized by the adaptive immune system. Second,
a characteristic of HIV is the unique choice of target cells: the virus infects cells of the
immune system, in particular CD4+ helper T cells that coordinate the immune response.
Consequently, the virus slowly and steadily destroys is natural antagonist. Third, HIV
has evolved mechanisms to counter immune responses, e.g. the accessory protein Nef
down-regulates the synthesis of MHC molecules, which are crucial for the identification
of infected cells by T cells (Yang et al., 2002), and the surface envelope proteins exhibit
multiple features for successfully avoiding antibody recognition. A further complication
for vaccine design is resulting from the fact that HIV integrates its genetic information
into the host genome rapidly after infecting a cell. When the provirus is in its latent state,
the cell shows no signs of infection and is immunologically silent and thus unrecognized



158 7 A Solution to the HIV Pandemic: A Vaccine

by the immune system. This way the virus can survive for decades in memory cells of the
immune system, its latent viral reservoir.
All these unique features of HIV lead to following requirements for a successful vaccine:

recognition of an array of diverse viruses and fast response to the challenge in order to
prevent the establishment of viral reservoirs. If the vaccine fails to prevent the latter, it
has at least to assist the natural immune response in preventing the destruction of CD4+

cells during the acute phase (Walker and Burton, 2008). This would enable the patient to
better control the infection, i.e. maintain a low viremia, and thereby substantially delay
progression to AIDS and, in addition, reduce the risk of transmission to further individuals.
Because cells present fragments of proteins they produce on their surface via their MHC

molecules, HIV vaccines aiming at eliciting T cell-mediated immunity can (in theory) be
based on any of the viral proteins. Vaccines that rely on eliciting neutralizing antibodies, on
the other hand, can only target the viral spike (gp160). As mentioned earlier (Section 2.2)
the viral spike comprises two sub-units, gp41 (transmembrane) and gp120, that occur in
trimeric form (Figure 7.1 a) (Liu et al., 2008). During cell entry, the glycoprotein gp120
binds to the CD4 receptor and the coreceptors, while gp41 is responsible for membrane
fusion. The viral spike is heavily shielded against the host immune system by multiple
mechanisms. For instance, the glycoprotein, as its name suggests, is densely covered with
sugar molecules that shield conserved epitopes against the adaptive immune response. The
subunit gp120 contains five variable regions (V1-V5) that are inter-spaced with conserved
regions. These five variable loops exhibit a very high sequence diversity and provide further
protection of the conserved parts of gp120 against immune recognition. The variable surface
region of gp120 is also referred to as the “silent face” because only few antibodies are elicited
against it (Karlsson Hedestam et al., 2008). Figure 7.1 b) shows the core of the gp120
protein in contact with the CD4 receptor. Also its own structure protects the viral spike
against the immune response. Conserved regions in gp41, for instance, are inaccessible,
simply because there is too little space between gp120 and the viral membrane to allow
for binding of the B cell receptor. A more advanced protection mechanism is termed
conformational masking. Here, conserved epitopes are only accessible after conformational
changes in the protein. For instance, the coreceptor binding site of gp120 is only accessible
after the conformational change induced by CD4 binding (Douek et al., 2006).
Upon infection, a race between HIV and the adaptive immune system commences. Un-

fortunately, the virus is always one step ahead. More precisely, the adaptive immune
system inflicts selective pressure on the evolution of HIV, which drives HIV to evolve into
variants that cannot be neutralized by the available array of neutralizing antibodies. Rich-
man et al. (2003) studied blood sera and viruses from patients at different time points.
Briefly, their analysis showed that the blood serum at time point t is very well capable of
neutralizing older viral variants, i.e. obtained at time point t − 1 and earlier. However,
the sera are only insufficiently capable or incapable of neutralizing the current or future
variants, respectively. Thus, antibodies typically generated during a chronic HIV infection
cannot be used as basis for a vaccine. Fortunately, some chronically infected individuals
elicit antibodies that are capable of neutralizing a broad range of HIV variants. These
broadly neutralizing antibodies are of major interest for the design of a successful HIV
vaccine because they provide the means of establishing sterilizing immunity. In addition,
currently existing neutralizing antibodies demonstrate that the viral spike has a few weak
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(a) The viral spike (b) Structure of the gp120 core

Figure 7.1: A schematic representation of the HIV-1 envelope glycoprotein trimer in contact
with the CD4 receptor (red) and the coreceptor (green) of the host cell (a). The
trimer comprises three copies of the transmembrane glycoprotein gp41 (brown),
the three copies of the surface glycoprotein gp120 (blue) are attached to gp41.
Figure reprinted from Phogat and Wyatt (2007) with kind permission from
Bentham Science Publishers. Structure of core gp120 (purple) in complex with
the CD4 receptor (orange) (b). The figure was rendered with PyMOL on the
basis of PDB entry 2nxy. Estimated position of the five loops is given in blue
font.

spots that can be exploited by rational vaccine design. This knowledge can help to develop
an immunogen that elicits broadly neutralizing antibodies (bnAbs) in vivo.

Until now, a number of broadly neutralizing antibodies have been identified in chronically
infected individuals (Burton et al., 2004) and the search for new bnAbs is still going on
(Walker et al., 2009). One of the first bnAbs discovered, which is called b12, targets an
epitope that substentially overlaps with the conserved CD4 binding site on gp120 (Burton
et al., 1994). Consequently, upon binding to gp120 the nAb prevents CD4 attachment,
and thus the conformational change that is a prerequisite for successful entry of HIV into
the target cell. The nAbs 2F5 and 4E10 recognize conserved linear epitopes on gp41. It
is expected that these nAbs act like fusion inhibitors, i.e. they exhibit their neutralizing
effect by preventing the conformational change in gp41 leading to fusion of viral and cell
membranes. Figure 7.2 depicts the viral spike and epitopes recognized by some bnAbs.
Recently, Trkola et al. (2008) demonstrated the efficacy of bnAbs in vivo with the aim to
determine clinically relevant titers of the antibodies.

HIV Vaccine Candidates

So far, there have been a few vaccine candidates that were tested in clinical trials. The
most prominent examples are AIDSVAX and the STEP study.
Within STEP (launched in 2004) a candidate vaccine using a replication-deficient aden-

ovirus type 5 vector that expresses some HIV clade (subtype) B proteins (Gag, Pol, Nef )
was investigated. As it is clear from the list of HIV proteins involved, the candidate was
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Figure 7.2: Structure of the envelope trimer with highlighted epitopes of some broadly
neutralizing antibodies: 2F5 (red), 4E10 (yellow), b12 (grey), and 17b (orange).
Figure reprinted from Phogat and Wyatt (2007) with kind permission from
Bentham Science Publishers.

targeted to elicit T cell mediated immunity. The clinical trial, however, was stopped in
2007 by the Data and Safety Monitoring Board. The reason for the premature end of the
trial was that individuals that received the vaccine exhibited an enhanced rate of HIV-1
acquisition compared to people in the control group (Barouch, 2008). This, of course, was
an immense setback for the HIV vaccine research.
The AIDSVAX vaccine candidate developed by the company VaxGen uses monomeric

gp120 to elicit humoral immune response, i.e. neutralizing antibodies. The candidate
managed to elicit type-specific antibody response. A protective effect, however, could not
be detected in two clinical trials in 2005 and 2006 (Barouch, 2008).
Recently, AIDSVAX received further media coverage when in September 2009, researchers

reported a success in the search for an HIV vaccine. In a study started in October 2003
in Thailand, about 16,000 participants of HIV negative men and women received a combi-
nation of the two earlier tested vaccine candidates AIDSVAX and ALVAC-HIV. ALVAC-
HIV uses a canarypox vector that, like the candidate in the STEP trial, expresses HIV
(poly-)proteins (here: Gag, Env, PR). At the endpoint of the study, 76 participants from
the control group were infected with HIV, compared to 56 of the vaccinated participants.
Hence, the vaccine’s efficacy was 26.4%. This result, however, did not reach statistical
significance. Statistical significance and 31.2% vaccine efficacy was achieved after exclud-
ing seven individuals that were found to have HIV at baseline (Rerks-Ngarm et al., 2009).
Although a glimmer of hope, the protection conferred by the vaccine is only marginal and
the analysis of the trial is regarded a “data crunch” for achieving statistical significance1.

1http://www.nature.com/news/2009/091021/full/news.2009.1035.html

http://www.nature.com/news/2009/091021/full/news.2009.1035.html
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Despite the immense promise given by bnAbs, it has not been possible yet to identify an
immunogen that elicits bnAbs in vivo. With the work presented in the following we inves-
tigate what determines the susceptibility of an Env variant against three of the available
bnAbs.

7.3 Predicting Neutralization from Genotype

This section describes a joint work with Fabian Müller, Oliver Sander, Thomas Lengauer,
Klaus Überla, and Francisco Domingues. Here, using an array of statistical learning meth-
ods, we investigate the genotype-phenotype-relationship between the Env genotype and
the neutralization phenotype of 147 viral variants with three different bnAbs. The experi-
mental assay for determining the neutralization phenotype is very similar to the approach
used for assessing in vitro drug resistance phenotypes (Section 2.5) and thus not described
in further detail (Richman et al. (2003) for example used an adapted version of the origi-
nal drug resistance assay developed by Petropoulos et al. (2000)). We selected statistical
learning methods that allow for assessing feature importance and analyze statistically rel-
evant positions in terms of susceptibility to neutralization by bnAbs. Finally, based on the
knowledge derived from interpreting the statistical learning methods we propose in vitro
experiments for experimental validation of our model. The focus of our investigation is the
antibody b12, which targets an epitope that largely overlaps with the CD4 binding site.
The model will be used to optimize an immunogen in an HIV vaccine development project.

7.3.1 Material and Methods

Data

The data for this study originate from four publications. Binley et al. (2004) studied
the neutralization phenotype regarding a panel of nAbs of 90 viral variants from different
clades, Li et al. (2005, 2006) analyzed 19 and 18 variants from clade B and C, respec-
tively, and Schweighardt et al. (2007) examined another 20 variants from subtype B. The
datasets are named according to their origin and subtype of focus (Binley, Li.B, Li.C, and
Schweighardt.B). Due to an overlap of viral variants studied in Binley and Li.B, five of the
total 147 samples were excluded from the analysis. All publications provided IC50 values
for the three nAbs b12, 2F5, and 4E10. The continuous neutralization phenotypes were
dichotomized to “neutralizing” and “non-neutralizing” using an antibody-dependent cutoff;
IC50 values below the cutoff indicate neutralization by the antibody. For b12 and 2F5
the cutoff selection was straightforward, since a large fraction of the samples was clearly
not susceptible to the antibody (values “>50” and “>25” of mg antibody/ml, respectively),
and variants with intermediate susceptibility were rare. The neutralization effect of 4E10,
however, was so broad that only very few viruses were completely resistant. Thus, a cut-
off between very susceptible and intermediate susceptible isolates was selected based on
the distribution of IC50 values. Figure 7.3 a) depicts the distribution of IC50 values for all
three bnAbs and the applied cutoffs, and Figure 7.3 b) shows the distribution of the binary
neutralization phenotype within each clade in the dataset. The b12 phenotype data for
clades B, C, and D is almost balanced, while other clades (represented by a few isolates
only) are mainly non-neutralizing.
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Figure 7.3: Histograms of IC50 values for antibodies b12, 2F5, and 4E10 (a). Origin of
the data is color-coded: Binley (blue), Li.B (light green), Li.C (dark green),
Schweighardt.B (orange). Cutoffs are depicted by red dashed lines. Distribu-
tion of the binary neutralization phenotype within each clade (b). Left, middle,
and right bars correspond to the b12, 2F5, and 4E10 phenotype, respectively.

Amino-acid sequence data for the 142 Env variants were obtained from GenBank using
the accession numbers listed in the four publications. The Env gene comprises the sig-
nal peptide, gp120, and gp41. The sequences were aligned using MUSCLE (Edgar, 2004)
according to a guide tree based on the HIV phylogenetic tree published by Leitner et al.
(2005). The sequence of HXB2 was added to the multiple sequence alignment as an align-
ment independent reference. For details on the sequence processing please refer to the
Master thesis of Fabian Müller (Müller, 2009). The final alignment comprised 975 amino
acid positions.

Feature Encodings

The amino acids at each of the 975 alignment positions were encoded in two different ways.
The categorical encoding was used for statistical methods that can operate on categorical
data. Here, each alignment position was represented as a single character: one of the 20
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amino acids, a gap symbol (-), symbols for uncertain amino acids (B and Z, representing
presence of Asparagine or Aspartic acid and Glutamine or Glutamic acid, respectively), or
a symbol representing any amino acid (X). Hence, each viral variant was represented by
one feature for each alignment position. The binary encoding was input to support vector
machines (SVMs), which are unable to operate on categorical features with more than two
categories. Consequently, we used the same encoding as in geno2pheno (Section 2.5.2),
i.e. we encoded an amino acid sequence using binary indicator variables. More precisely,
one indicator variable was used for each possible symbol at each alignment position. Thus,
a sequence was represented as a binary vector of length 24× 975. We refer to the categorical
encoding and the binary encoding as the sequence encoding.

A property that is only implicitly captured by the sequence encoding is the location of
potential N-linked glycosylation sites. As stated before, sugar molecules attached to the
surface of gp120 mask conserved epitopes from recognition by the immune system. The
glycosylation processes is carried out by the host cell at Asparagines (N) that are followed
by any amino acid (X) and Serine (S) or Threonine (T), i.e. the typical NX[S,T] pattern
of N-linked glycosylation. There were 268 positions in the alignment showing at least one
N among all sequences. Of those, 148 fulfilled the NX[S,T] criterion in at least one Env
variant. The respective 148 binary features constitute the glycosylation encoding, which
were added to the sequence encoding (glyco).

Apart from regions of high sequence variability, the multiple sequence alignment was
very stable. Unfortunately, regions of high sequence variability comprise exactly the five
variable loops that are believed to play an important role in determining antibody neu-
tralization (Wyatt and Sodroski, 1998; Pantophlet and Burton, 2006). In order to further
investigate the influence of variable loops on the ability to predict neutralization by anti-
bodies, they were completely removed from the sequence encoding (no loops). In addition,
we used sequence encodings that maintained sequence information on exactly one variable
loop, for all five loops (only Vx ). Furthermore, as a replacement for the sequence infor-
mation, we encoded the five loops using alignment-independent features meant to capture
physicochemical properties, which can be derived from the sequence information. More
precisely, for variable loop features we used the molecular weight (sum of all molecular
weights of residues in the loop; one continuous feature per loop), the charge (number of
positively and negatively charged amino acids or the overall charge; three integer features
per loop), the length (number of residues in the loop, one integer variable per loop), the
hydropathy (sum of all hydropathy indices of the residues (Kyte and Doolittle, 1982); one
continuous feature per loop), the number of potential hydrogen bonds (absolute number of
residues potentially participating in hydrogen bonds, and sum of all donors and acceptors;
two integer values per loop), the N-linked glycosylation (number of potential glycosylation
sites; one integer per loop), the fold index (based on Prilusky et al. (2005); one continuous
variable per loop), and simply the abundance of each amino acid in the loop (20 integer
values per loop). These variable loop features were added to the no loops encoding (loop
feat).

Finally, we also investigated subsets of the sequence encoding that were restricted to the
three parts of Env : the signal peptide (signal), gp120, and gp41.

All applied encodings are briefly summarized in Table 7.1.
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encoding description
sequence comprises sequence information of the Env gene: for the RF, amino

acids sequences were encoded using categorical features; for the SVM,
sequences were represented by a binary encoding

glyco sequence encoding and additional 148 binary features indicating
potential glycosylation sites

no loops sequence information removed from all variable loops
loop feat sequence information removed from all variable loops; instead loops are

represented by physicochemical properties (see text)
only Vx sequence information removed from all variable loops, but Vx, with

x ∈ {1, . . . , 5}
signal sequence encoding restricted to signal peptide
gp120 sequence encoding restricted to gp120
gp41 sequence encoding restricted to gp41

Table 7.1: List of feature encodings. The features are briefly summarized, for a full de-
scription see the text.

Statistical Learning Methods

We employed two statistical learning methods for predicting the binary neutralization
phenotype of viral Env variants. The Random Forests (RF) method (Breiman, 2001)
trains B decision trees on B bootstrap replicates of the training data. At each node, only
m randomly chosen variables of all p variables are considered for the split. The variable
that reduces the impurity of the labels the most is selected for splitting the node. In RF
the impurity is measured using the Gini index:

∑
k pk(1−pk), where k and pk are the class

and the frequency of that class at the node to be split, respectively. All B trees are fully
grown and left unpruned. For the two parameters of the method, the number of features
checked at each split (m) and the number of trees (B) we chose standard values b√pc and
500, respectively. For the RF classifier the categorical sequence encoding was used since
RF can operate on categorical variables.

As second classifier we applied linear support vector machines (SVMs). For the param-
eter C, which penalizes misclassified samples in the training set, values of 2−7, 2−6, . . . , 22

were tested in a 10-fold cross-validation. The choice of the parameter did not influence the
performance substantially, and was therefore set to 1. Since linear SVMs do not support
categorical data the binary sequence encoding was applied. For achieving optimal perfor-
mance, constant features were removed, and the built-in scaling option for features in the
libSVM implementation (Chang and Lin, 2001) was used.

The classification performance for both methods was assessed using the area under the
ROC curve (AUC) in a 10 times five-fold cross-validation setting. Both classifiers were used
together with all feature encodings for predicting neutralization by all three antibodies.
Statistical significance is assessed using a one-sided Wilcoxon test on the 10 mean AUCs
obtained in the five-fold cross-validation runs.
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Measures of Variable Importance

We used Mutual Information (MI) and p-values from Fisher’s exact test (Fisher, 1922)
as univariate measures of feature importance. Both measures were applied only to the
categorical sequence encoding. Furthermore, we used the mean decrease in Gini index
(MDG) extracted from the RF models and z-scores of features weights derived from the
linear SVM (Section 3.1) as multivariate measures of feature importance. Briefly, the MDG
of a feature is the decrease in Gini index observed when a node was split using that feature
– averaged over all B trees in the forest. Due to the binary encoding of the sequence
for the SVM, the feature importance (z-scores) was provided for each amino acid at each
alignment position. In order to make the measure comparable to the measures provided
by the other three methods, which provide one value for each alignment position, only the
maximum z-score at each alignment position was used as a measure of feature importance.

As recently described, the MDG is biased towards features with a high number of cat-
egories (Strobl et al., 2007), e.g. an uninformative variable with 10 categories receives
a higher MDG than an uninformative variable with two categories. Consequently, infor-
mative features with few categories may go unnoticed among uninformative features with
many categories. This bias is of particular interest for our problem, since alignment posi-
tions in unstable regions of the alignment show a higher number of different amino acids,
i.e. categories, than positions in stable regions. Thus, MDG for amino acids located in the
variable loops are likely to be boosted by this artifact.

In order to correct for this bias, we developed a heuristic based on permutations. Briefly,
the response vector is randomly permuted k times, and for each permutation the RF
classifier is trained and MDG for each variable is computed. Mean µ and standard deviation
σ of MDG for one feature are estimated from the k models. Under the assumption that the
MDG of an uninformative variable is normally distributed, given µ and σ, the probability
of observing the MDG value obtained in combination with the original response vector
serves as a p-value. We termed this approach permutation importance (PImp; Altmann
et al. (2010)). For correcting the MDG importance, we used 1000 permutations of the
original response vector.

For MI and the combined z-scores we observed the same bias as for MDG (Müller, 2009),
and consequently, we applied PImp for correcting it. For both MI and SVM-based z-scores
the PImp p-value was based on 1000 iterations.

All measures of variable importance were applied to the complete set of 142 training
samples, i.e. not derived from cross-validation models.

In vitro Validation

In order to experimentally validate our b12 prediction model, site-directed mutagenesis is
performed to confirm important positions derived from the feature importance analysis.
To this end, the b12 neutralization phenotype is measured before (original viral variant)
and after the introduction of up to three mutations. In total, 18 sets of mutations were
introduced into 10 different viral variants.
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7.3.2 Results

Classification Performance

Table 7.2 lists the mean AUC and its standard deviation assessed in 10 repetitions of 5-fold
cross-validation. Based on sequence information alone both classifiers achieve an AUC of
around 0.8 for predicting the b12 neutralization phenotype. Adding information on puta-
tive glycosylation sites slightly decreased the performance for both methods. Removal of
the sequence information from the five variable loops led to a substantial and significant
decrease in performance for the RF (p = 0.00098) and the SVM model (p = 0.00195).
Replacement of the sequence information of the variable loops with the variable loop fea-
tures led to a further decrease in performance. Maintaining the sequence information of
the V2 loop resulted in re-establishment (and even slight improvement) of the performance
obtained with the complete sequence. Maintaining one of the other variable regions did not
improve performance substantially over the model without any variable loop information
(data not shown). The model based on the gp120 region alone achieved a performance
comparable to the sequence encoding, while models based on the signal peptide or gp41
alone were clearly inferior (both p = 0.00098). For most encodings (except “signal” and
“gp120”) the SVM outperformed the RF model significantly (p < 0.03223).
RF performs significantly better than the linear SVM (p < 0.00977) for the prediction

of neutralization by nAb 2F5. With AUCs above 0.9 the performance for the RF models
is better than that for the b12 model. Addition of glycosylation features resulted in a
slight decrease in performance, while removal of variable loop information, unlike in the
case of b12, resulted in a slight increase. The best performance was achieved for both
learners when the sequence information was restricted to gp41. For both methods the
model restricted to gp41 sequence information model significantly better than the sequence
encoding (p < 0.004883).

With values around 0.72 the performance of 4E10 neutralization prediction is slightly
worse than the performance observed for the b12 models. Here, addition of glycosylation
and removal of the variable regions slightly increased the model performance. As in the
case of 2F5, the best models were obtained when the information was restricted to the
target of the nAb: gp41. The improvement reached statistical significance only for the RF
classifier (p = 0.001953).

Variable Importance

Figure 7.4 a) depicts the raw MDG importance extracted from the RF model predicting
b12 neutralization. A large number of alignment positions within the variable loops (pri-
marily V1,V2, and V4) received high MDG values. The PImp correction of the MDG
(Figure 7.4 b), however, yields a different picture. Here, most of the variable loops do
not contain any information. The exception is V2, which contains four of the top 20 most
important positions. In general, according to this model, only few positions are linked to
the b12 neutralization phenotype. Surprisingly, among the top 20, two important positions
are located in the signal peptide, and another five are in gp41. One of the positions in
the signal peptide (5b; an insertion compared to HXB2) is indeed the top-most important
position. The second most important position is located in the b12 binding site.
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Figure 7.4: Feature importance derived from models that predict b12 neutralization: RF
MDG (a), PImp of MDG (b), consensus of all four methods (c). The regions of
Env (signal peptide, gp120, and gp41) are separated by vertical dashed lines.
The variable regions within gp120 are highlighted in the background orange
(V1), green (V2), beige (V3), light blue (V4), and yellow (V5). Furthermore,
known epitopes are highlighted with red (CD4 binding), blue (b12 binding),
purple (CD4 and b12), orange (2F5 binding), and green (4E10 binding). For
the top 20 important residues, the position in reference to HXB2 is provided.
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b12 2F5 4E10
RF SVM RF SVM RF SVM

sequence 0.791 (0.018) 0.808 (0.020) 0.914 (0.013) 0.840 (0.012) 0.717 (0.026) 0.718 (0.018)
glyco 0.782 (0.021) 0.803 (0.020) 0.905 (0.019) 0.836 (0.014) 0.724 (0.032) 0.723 (0.020)
no loops 0.765 (0.013) 0.781 (0.019) 0.927 (0.016) 0.845 (0.015) 0.736 (0.025) 0.719 (0.022)
loop feat 0.755 (0.015) 0.773 (0.021) 0.911 (0.017) 0.849 (0.013) 0.719 (0.023) 0.710 (0.021)
only V2 0.801 (0.017) 0.813 (0.019) 0.924 (0.011) 0.829 (0.011) 0.727 (0.028) 0.708 (0.029)
signal 0.708 (0.024) 0.579 (0.031) 0.766 (0.016) 0.693 (0.021) 0.621 (0.038) 0.587 (0.037)
gp120 0.788 (0.015) 0.792 (0.026) 0.825 (0.028) 0.807 (0.016) 0.694 (0.023) 0.680 (0.026)
gp41 0.734 (0.019) 0.752 (0.020) 0.956 (0.013) 0.866 (0.016) 0.754 (0.019) 0.726 (0.028)

Table 7.2: Classification performance. The mean (sd) classification performance measured
using AUC and assessed via 10 repetitions of 5-fold cross-validation for the two
classifiers (RF and SVM) and the three different antibodies. Rows correspond to
different feature sets (see Table 7.1 for a brief description). The best performance
for each antibody is indicated by bold font.

Every measure for feature importance provided a slightly different picture (data not
shown). Thus, for the final interpretation we will rely on a consensus of the four methods.
The consensus (Figure 7.4 c) counts how often each position occurs among the top 20
most important positions (thus, only values of 0, . . . , 4 are possible). Figure 7.5 depicts
the location of important positions (i.e. appearing in two or more top 20 lists) on the
gp120 structure (PDB ID 2nxy). Of the eight positions with a consensus count of two
or larger in gp120 and outside the variable loops, two cannot be mapped to the structure
(HXB2 positions 47 and 63), two are located in the b12 binding site (positions 369 and
432), three are surrounding the b12 binding side (positions 352, 360, and 460), and one
is located on the opposite site of the b12 binding site (position 446). Of note, position
446 is a potential glycosylation site, and also, mutations at this position might influence
the glycosylation status of position 444. Due to the trimeric structure of gp120 (see for
instance Liu et al. (2008)), glycans attach at this position might influence binding of b12.
Of note, two additional b12 binding sites appear among the top 20 list of one method
(positions 372 (RF) and 386 (SVM)).
Figure 7.6 a) shows the PImp MDG from the RF 2F5 model. One positions (665) in

gp41 receives outstanding importance and is located in the 2F5 epitope (Zwick et al.,
2001). Among the top 20, two additional positions (662 and 667) belonging the linear
epitope are discovered. Likewise, Figure 7.6 b) depicts the PImp MDG importance for
the 4E10 model. Important positions are more scattered in the complete Env gene, than
in the case of 2F5. The most important position is located in gp41 and the second most
important one between the variable loops V3 and V4. With position 674, one known 4E10
binding site position (Zwick et al., 2001) is ranked third by the corrected MDG measure.

In vitro Validation

Table 7.3 lists the sets of mutations that were selected for experimental validation. With
pathways of three mutations we aim at observing a substantial change in the b12 neutral-
ization phenotype. Mutations in the signal peptide and in gp41 are used to verify, whether
these positions are statistical artifacts or have biological impact. Further mutations are
used to assess the effect of adding and removing potential glycosylation sites. The remain-
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Figure 7.5: Important positions for b12 neutralization. Important positions were mapped
to the structure of gp120 (PDB ID 2nxy). The right picture depicts the surface
of b12 and CD4 binding sites, the left picture provides the location of the
important positions on the HXB2 reference sequence.
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ing experiments shall clarify the effect of mutations close to the b12 binding site and within
conserved parts of V1 and V2. For further information on the mutation selection process
please refer to the Master thesis of Fabian Müller (Müller, 2009).
The mutagenesis and neutralization experiments are currently being conduced at Prof.

Dr. Klaus Überla’s laboratory at the Ruhr-University in Bochum, Germany.

7.3.3 Discussion

We trained statistical learning models that predict the neutralization of viral variants by
three nAbs based on the Env amino acid sequence. With AUC values from 0.717 to 0.914
all models achieved good to very good prediction performance using the sequence encoding.
The removal of sequence information of the five variable loops resulted in a sensible

loss of performance for the RF model in the prediction of neutralization by b12. The
dependence on information on the variable loop V2 for predicting the b12 phenotype is
confirmed by the re-established performance after providing the V2 sequence information
and by the consensus variable importance (Figure 7.4). Here, several positions within V2
receive high importance values. The influence of the V2 loop on the neutralization efficacy
by b12 was recognized soon after the discovery of b12 (Roben et al., 1994). Of note,
the corrected MDG measure concurs better with the increase in performance due to the
addition of single loops than the uncorrected MDG measure. The variable loop features
derived from sequence information that aimed at capturing physicochemical properties
of the loops failed to improve the model. In fact, inclusion of these features resulted in
decreased performance with both statistical learning methods.
Several of the important sequence positions in the conserved region of gp120 were located

either in the b12 binding site or structurally close to the b12 and CD4 binding site. The
virus has to maintain the capability to bind the CD4 receptor, hence mutations in the CD4
binding site are unlikely. Consequently, substitutions near the or at the b12 binding site,
but not at the CD4 binding site, are likely to affect susceptibility to nAb b12.
For other important positions that do not afford an obvious explanation, we will conduct

in vitro neutralization experiments that will either confirm their importance or mark them
as an artifact of the statistical methods.
The interpretation of the 2F5 prediction models revealed that decisions of the RF model

were mainly based on a single position within the known 2F5 epitope. Also the analysis of
the 4E10 RF model reveals a known position in the binding epitope among the top three
important positions. Given that the cutoff selection for 4E10 was not as straightforward
as for the other two antibodies, the rediscovery of a known epitope is reassuring. The
agreement between the positions relevant for 2F5 and 4E10 neutralization and their known
epitopes confirm the validity of the approach.
Unfortunately, the described method is susceptible to evolutionary bias. Here, evolution-

ary bias occurs in the form of two (or more) mutations, with one mutation having a causal
link to the phenotype, and the other mutations merely being correlated to the first one
due to emergence in a common ancestor or accumulation in the same lineage. Of course,
the statistical learning models cannot discriminate between a causal link and a correlation
to the phenotype. These correlations might explain the positions falsely assessed as being
important by the method. Mutations that are located in the signal peptide or in gp41
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and are supposed to be determinants of b12 binding are likely examples for this bias. For
instance, position 5b in the signal peptide is highly correlated with position 352 in the
proximity of the b12 binding site (Müller, 2009). Moreover, best performance was usually
achieved when the sequence information was restricted to the Env region targeted by the
nAb. Models based on the remaining regions that accommodate (potential) correlated mu-
tations were clearly inferior. With such a restricted dataset a cautious interpretation of the
results is required. Also the clade membership is a strong indicator for this evolutionary
bias. In order to study a less biased dataset we repeated the RF analysis of b12 neutraliza-
tion prediction with a dataset restricted to sequences from clades B, C, and D that show a
balanced neutralization phenotype. The dataset comprised 106 instances, and the AUC of
the sequence encoding was 0.75±0.037, corresponding to a slight decrease in comparison
to the full dataset. The qualitative findings, however, could be confirmed: decrease of per-
formance without information on variable loops (0.67±0.038), models restricted to signal
peptide (0.578±0.054) and gp41 (0.63±0.043) achieved worst performance, and sequence
information on the V2 loop is pivotal for prediction performance (0.764±0.028).
A drawback of this study was the fact that experimental data were pooled from four

different publications using different assays. Different neutralization assays may show a
different phenotype in combination with some or all nAbs (Fenyö et al., 2009). However,
dichotomizing the neutralization phenotype to “neutralizing” and “non-neutralizing” using
a cutoff is likely to remove most of the variation originating from different assays. Moreover,
we did not use the misclassification rate as a performance measure, but the area under
the ROC curve. The latter measure can be interpreted as the probability that a randomly
chosen positive (neutralizing) sample receives a higher prediction score than a randomly
selected negative (non-neutralizing) sample. More precisely, the AUC is computed by first
sorting all samples according to their predicted value. Hence, even if, due to experimental
variation, a sample is mislabeled, it is less likely to substantially perturb the performance
measure. Simply because samples close to the cutoff are more likely to receive prediction
values in-between clear negatives and clear positives.
Despite the fact that only relatively few training data were available, we were able to

build statistical models with high predictive power. Furthermore, interpretation of these
models revealed sequence positions that were known to be in the binding site of the studied
nAbs. Therefore, this seems to be a valid approach for identifying residues that determine
antibody neutralization.
In terms of vaccine design our approach can be used of identify viral variants that

are potential immunogens for eliciting a broadly neutralizing antibody. More precisely,
assuming that variants that are very susceptible to a given nAb are also potential potent
immunogens, which elicit the nAb in vivo, our in silico prediction method can help to
screen large available sequence databases for interesting candidate immunogens.

7.4 Outlook

In the search for new broadly neutralizing antibodies, comparatively large panels of differ-
ent viruses are tested against the new candidate antibody, and the three antibodies studied
here are typically used as a reference, see for instance the work by Walker et al. (2009).
Hence, if made public, additional data can be used to improve the prediction models intro-
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duced here, or alternatively, the additional samples can be used as an independent valida-
tion set. Moreover, our approach can also be extended to study the genotype-phenotype
relation of newly discovered nAbs.
An additional approach to improving models that predict neutralization by antibodies

is the utilization of features derived from the protein structure instead of the sequence.
Clearly, successful binding of a nAb to its epitope on the surface of the viral spike is deter-
mined by shape and chemical complementarity. The protein sequence is only an indicator
for the structure of the protein in vivo. As a consequence of its high impact for vaccine
design, the structure of the gp120 core was studied in great detail, and today there are
a number of experimentally generated protein crystal structures available. Some of these
structures contain even the variable loop V3 (Huang et al., 2005) that is crucial in core-
ceptor binding. And, precisely this structure of the V3 loop was previously used to derive
structural descriptors for the prediction of coreceptor usage (Sander et al., 2007). In this
previous work, a statistical learning model using structural descriptors could outperform
a sequence-based approach, and a combination of both, structure and sequence, provided
the best model. Likewise, the prediction of neutralization by nAbs could benefit from the
application of structural descriptors. This approach is of particular interest for b12, as a
gp120 structure in complex with b12 is available (Zhou et al., 2007).
The proposed approach to model nAb neutralization will be applied to assist vaccine

development. The knowledge extracted from the statistical learning models and the mod-
els themselves can help to construct a large library of Env variants that are likely to be
neutralized by the nAb. The library of Env variants is then used in an immunogen opti-
mization protocol to develop an HIV vaccine. In particular, the variants in the library will
be screened for their ability to evoke a strong immune response and additional statistical
models will also be implemented for refining the search of candidate immunogens.
The approach for finding immunogens that elicit a desired type of antibodies can be

extended to find nAbs for other pathogens or even for specific types of cancer.
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8 Conclusion and Outlook

We have presented methods for improving HIV patient care. The developed models use
techniques from statistical learning and focus on the prediction of response to combination
treatment as opposed to resistance against single drugs.
In particular, we investigated the benefit of features encoding the viral evolution during

therapy. The most predictive feature was the genetic barrier to drug resistance, which
quantifies the likelihood that the virus will escape from the drug by developing further
resistance mutations. A statistical model was trained on clinical data from the United
States of America comprising viral genotype, treatment, and outcome of the regimen. The
use of the genetic barrier together with indicators for mutations in protease and reverse
transcriptase as well as indicators for the usage of antiretroviral drugs in the regimen out-
performs commonly used rules-based systems in finding successful treatments. Precisely,
a retrospective analysis on data from Europe demonstrated that our tool geno2pheno-
THEO reaches a true positive rate (TPR) of 64% at a false positive rate (FPR) of 20%.
By contrast, the rules-based approaches yield only 44% to 48% TPR at the same FPR, i.e.
our method identifies up to 20% more successful combination treatments than standard
approaches.
Within the EuResist project, which integrated multiple HIV resistance databases stor-

ing treatment related information, we further developed geno2pheno-THEO. In particular,
we improved the genetic barrier by relying on a large number of predicted resistance pheno-
types rather than a small number of measured phenotypes for defining mutation patterns
that correspond to complete resistance. And, more importantly, we made use of the pa-
tient’s treatment history (i.e. drugs the patient has been exposed to) and baseline viral
load to improve prediction to combination therapy. Apart from geno2pheno-THEO, which
is (due to the employed features based on viral evolution) also referred to as evolutionary
engine, two other prediction models were developed within the project. In order to provide
a single prediction for one request, we explored ways for optimally combining the output
of all three engines. Here, it turned out that simply using the mean of all predictions is
an efficient and robust way. On a small set of 25 treatment change episode the predictions
of the combined prediction engine were compared to the predictions of ten international
human HIV treatment experts. Our system performed as well as the best human expert
and also as well as the consensus of all human experts.
The availability of three prediction engines trained on the same training data unveiled a

serious limitation of the current definition to of treatment response. The standard datum
definition focuses on short-term response measured at eight weeks (4-12) of therapy. The
cutoff for success was a viral load below 500 cp/ml at the time-point closest to eight weeks.
A substantial number of treatments, however, which were labeled as failure, reached a
VL below the threshold at a later time during the treatment. Interestingly, all three
engines captured that trend frequently, and disagreed with the label of the treatment.
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As a consequence, we studied modified treatment response definitions: sustained response
at 24 weeks (16-32) of treatment, the area under the viral load curve during one year
of therapy, and a labeling that combines short-term and sustained response. The latter
definition rejects treatments that have a discordant response at eight and 24 weeks of
therapy, and therefore filters instances with potential adherence problems. In this setting
our methodology achieves an AUC of 0.85 compared to an AUC of 0.77 on the original
response definition (using the richest model).
Furthermore, we addressed the update-problem of data-driven decision support systems.

Briefly, the update-problem originates from the fact that data-collection efforts providing
the training data for those systems lag behind the introduction of novel drugs. More
precisely, novel drugs tend to be prescribed to patients in an advanced state of the disease.
Hence, it takes time to collect a sufficient amount of training data for the data-driven
systems. In order to circumvent that problem, we introduced a new covariate, which
represents the activity of novel drugs in the regimen. Here, activity of novel drugs is
assessed by a rules-based system and when applied to treatments comprising newly licensed
drugs the modified system outperforms the purely rules-based approach – manifested in
an increase of the TPR by approximately 25% at a FPR of 20%.
We also investigated treatment history as a potential replacement for the viral sequence.

The rationale behind the approach is that the prescribed drugs shape the genetic makeup
of the viral population. Consequently, the treatment history, i.e. list of drugs the patient
was exposed to, is a strong predictor of treatment response. Here, we found that prediction
models based on history information alone are slightly inferior (AUC of 0.75) to genotype-
based predictions (AUC of 0.77). History and genotype information seem to be partially
complementary, since combining genotype-based and history-based predictions resulted in
a further increase in performance (AUC of 0.79), regardless of the mode of combination.
We made first progress towards the sequencing of anti-HIV therapies. To this end, we

used methods from large vocabulary language processing to develop a framework that
allows rapid search for likely viral variants arising at treatment failure. We developed
five mutation models on the basis of in vitro phenotypic resistance data and emergence of
resistance mutations observed in vivo. The framework was challenged to separate successful
from failing treatments on the basis of mutations caused by the immediately preceding
regimen. The performance was moderate (AUC of 0.63) but constitutes a substantial
improvement over the baseline (AUC of 0.55). Additionally, we could demonstrate that
resistance development is correctly captured within drug classes. Simulating resistance
development during antiretroviral treatment with a maximum of five mutations takes in
the new framework only 3 seconds while keeping track of the 100 most likely viral variants.
Hence, the framework affords web services with acceptable response time.
Finally, we developed statistical models that predict neutralization of HIV variants by

three broadly neutralizing antibodies based on the Env genotype. The predictive perfor-
mance of the models using sequence information of complete Env ranged from 0.72 AUC to
0.91 AUC, depending on the antibody. Interpretation of the statistical learning methods for
all three antibodies recovered at least one known position located in the antibody-specific
epitope. For the antibody b12, sequence information on the variable loop V2 is pivotal
to maintain model performance. Furthermore, selected mutations from the b12 model are
currently tested in vitro to further validate the approach. Knowledge derived from the
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statistical models and the models themselves can be used to build focused libraries that
screen in vitro for potent immunogens. Our methodology can, in theory, be applied to
novel HIV targeting neutralizing antibodies or even be extended to other pathogens and
cancer.
The work described in this thesis resulted in a number of freely available web ser-

vices. Geno2pheno-THEO is available as part of the geno2pheno web suite (http://www.
geno2pheno.org). Part of this web suite is also a prediction system for resistance against
integrase inhibitors and can be directly accessed at http://integrase.geno2pheno.org.
Finally, our contribution to the EuResist prediction engine can be queried as part of the
complete system using the website http://engine.euresist.org.

Outlook

A most straightforward direction is the extension of the models developed in this thesis to
the newly available drugs from different classes. In particular, integrase inhibitors and entry
inhibitors. A further challenge is the development of prediction tools for treatment naïve
patients. This group faces the unique problem of transmitted drug resistance mutations.
Transmitted mutations may, due to replicative disadvantage, vanish from the majority of
the viral population, and consequently, go unnoticed using standard interpretation tools.
However, traces of those mutations in viral genome are likely to be present at nucleotide or
in rare cases even at amino acid level. In addition, it is of particular interest to infer drug
adherence problems from stored treatment data (primarily viral load trajectories). Such
information will not only enhance response prediction, but, more importantly, will also
provide the means for treating clinicians to identify patients having trouble in correctly
taking their medication. Here, one can provide a tool for detering development of resistance
mutations.
Personalized treatment in the HIV field has, so far, only focused on the interaction be-

tween the drug and virus. With our approaches for predicting response to antiretroviral
drugs in vivo, a third player enters the interaction network: the patient. Until now, the
patient was almost neglected in the prediction of treatment response. However, in order to
make further advancements in personalized anti-HIV therapy the interplay between virus
and host as well as between drugs and host has to be considered. Indeed, initial studies
focusing on the relationship between human genomics and the control of HIV infection
have already been conduced (Telenti and Goldstein, 2006). The next steps in this direc-
tion should involve the systematic exploitation of available resistance databases that offer
a wealth of treatment data. Hence, it is comparatively uncomplicated to updated these
databases gradually with the missing human genetics data. This will offer a wealth of pos-
sibilities, including pharmocogenetic studies uncovering the interaction between drugs and
host-related differences in the involved metabolic pathways (Telenti and Zanger, 2008)1.
The resulting knowledge will help to provide the right dosage of drugs for the patient in
addition to the right drug attacking the virus. The correct dosing is of particular interest,
since drug-related side-effects are a major obstacle in the life-long HIV treatment. Also
the use of next generation sequencing techniques will allow to study the evolution of the

1http://www.hiv-pharmacogenomics.org/

http://www.geno2pheno.org
http://www.geno2pheno.org
http://integrase.geno2pheno.org
http://engine.euresist.org
http://www.hiv-pharmacogenomics.org/
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viral population during treatment and result in more advanced decision support tools.
The evaluation of clinical decision support systems used for assessing drug resistance

should be carried out on standardized publicly available datasets. To date, validation of
such tools is based on retrospective analysis of clinical data – with different sets of data used
for different tools. Consequently, the performance of the various number of tools is hard to
compare. Especially since the datasets are prone to local differences in drug prescriptions
or widely differing extent of pre-treatment of involved patients. Hence, a publicly available
benchmark dataset with fair distributions of drug usage and certain level of pre-treatment
(i.e. not to many “simple cases”) is needed. Moreover, publicly available datasets attract
a variety of scientists applying available methods or developing new tailored methods to
the problem. For instance, the freely available (standardized) genotype-phenotype dataset
(Rhee et al., 2006) caused a number of follow-up publications (Saigo et al., 2007; Kjaer
et al., 2008; Kierczak et al., 2009).
The methods developed in this theses can also be applied to optimization of treatment for

other viral diseases such as Hepatitis B and Hepatitis C. While data-collection efforts and
statistics will remain the same, the extension to these viral diseases is not straightforward,
as clinically relevant definitions of response to treatment have to be identified and agreed
upon. Furthermore, using matched genotype-phenotype data it is comparably simple to
identify resistance mutations. Understanding their mechanism of resistance, however, still
remains a challenge.
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