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Abstract—Comparing and combining data from different brain

imaging and non-imaging modalities is challenging, in particular due to

the different dimensionalities and resolutions of the modalities. Using
an abstract and expressive enough representation for the data, such

as graphs, enables gainful inference of relationship between biological

scales and mechanisms. Here, we propose a test for the significance of

groups of graph vertices in a modality when the grouping is defined in
another modality. We define test statistics that can be used to explore

subgraphs of interest, and a permutation-based test. We evaluate

sensitivity and specificity on synthetic graphs and a co-authorship
graph. We then report neuroimaging results on functional, structural,

and morphological connectivity graphs, by testing whether a gross

anatomical partition yields significant communities. We also exemplify

a hypothesis-driven use of the method by showing that elements of the
visual system likely covary in cortical thickness and are well connected

structurally.

Keywords-systems neuroscience; network analysis; multimodal neu-
roimaging; brain graphs; brain connectivity

I. INTRODUCTION

In the neuroimaging community, it is now common to refer

to “brain networks” or “connectivity graphs”, where the terms

apply to functional MRI (fMRI) connectivity of the brain, diffusion

weighted imaging (DWI) - based measures, or even covariation of

regional thickness or surface area. Multimodal datasets, reflecting

various aspects of the idea of connectivity, are increasingly being

acquired. Given a suitable modelling framework, the biological

underpinnings of connectivity can be explored and may reveal

interesting relationships between very different biological scales

and processes.

We believe that graph-based methods offer the right amount of

abstraction and modelling expressivity to establish such meaningful

relationships. Here, we focus on communities in graphs, broadly

defined as a set of vertices that have (relative) large edge weights

between them but small edge weights with the rest of the graph. By

assessing how community-like a set of graph vertices in one modal-

ity is, when grouped together by information in another modality,

we propose a principled way to relate different connectivities with

gross anatomical information, and enable hypothesis-driven testing.

While numerous methods exist to find communities in net-

works [1], comparatively few techniques allow assessing the

statistical significance of the community structure of a whole

network [2], and fewer still that of individual communities [3].

Further, objective evaluation of community scoring functions has

only recently been proposed [4]. This paper will focus on the

case where a graph is computed in one modality (e.g., a graph

established from DWI data), and partitioned into communities

based on another modality or knowledge source (e.g. anatomical

division into lobes). It is then desirable to establish whether such

partitions result in communities that are significant.

II. TESTING FOR COMMUNITY SIGNIFICANCE

A. Network communities and measuring modularity

Given a simple undirected labelled graph g = (V,E, α, β),
where V is the set of vertices, E is the set of edges, and α is the set

of vertex labels, the set of edge labels β :∈ R+ can be represented

as a symmetric adjacency matrix A ∈ R
|V |×|V |
+ . We can compute

a vector of vertex strengths (vertex volumes) s ∈ R
|V |
+ , where

sv =
∑|V |

v′=1
Av,v′ . Then, the total edge strength of the graph is

given by w ∈ R+ = 1T s. in addition, a partition vector p ∈ N
|V |,

defining the assignment of each vertex to a community, is given.

Here, the graph and its adjacency matrix are defined on a modality,

while the partition vector is defined in another modality.

A null model, encoding a random graph with the same expected

strength distribution as the graph with adjacency matrix A, can

be obtained as N = 1

2w
ssT (called the configuration null model,

or Newman-Girvan null model (NG)). Any other appropriate null

model may be used to define the null adjacency matrix N.

Finally, the modularity matrix [5] is defined as as B = A−N.

The modularity Q is defined as a sum over C communities Q =
1

2w

∑C

c=1

∑
i,j Bijδpi,pj , where δ is the Kronecker delta and p· is

an element of the partition vector. This quantity is evaluated for the

whole graph, and does not tell us whether a particular community

is significant. This, however, is of particular interest. Indeed it is

likely that only some of the communities in one modality have a

clear relationship with the organisation in another modality. We

therefore propose tests for individual communities.

B. Test statistics for individual communities

Each community c defines a subgraph gc = (Vc, Ec, αc, βc)
within the whole graph, where Vc ⊂ V,Ec ⊂ E,αc ⊂ α, βc ⊂
β. Intuitively, if the summed weight of all edges within vertices

in a community is large relative to the summed weight of edges

between vertices in this community and the rest of the graph, then

the community is more likely to be significant than if it is around

the same magnitude. We define normalised community strength as

a plausible quantity in this regard:

Sc =

∑
i∈Vc,j∈Vc

Aij
∑

i∈Vc,i∼j
Aij

, (1)

where ∼ represents an edge between vertex i and j ((vi, vj) ∈ E).

The denominator is the volume of the vertices in the subgraph

(sum of weights inside the subgraph plus sum of weights of edges

crossing the community boundary, that is,
∑

i∈Vc,j �∈Vc,i∼j
Aij).

This quantity is different from the local modularity of [6], which

counts edges linking vertices where at least one (instead of both

in Equation 1) is in the subgraph. It is equal to a weighted version

of the conductance Φ(c) of a subgraph c in an unweighted graph

(“fraction of total edge volume that points outside the cluster” [4]),
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if
∑

i∈Vc,j∈Vc
Aij =

√
2

2

∑
i∈Vc,j �∈Vc,i∼j

Aij , namely, if the

weight inside the subgraph is exactly
√

2

2
smaller than the boundary

volume. Thus, we have high correlation between Sc and 1−Φ(c).
Sc is bounded as 0 ≤ Sc ≤ 1 and offers easy interpretation: 0

indicates a pathological community with no edge weight for any

vertex in the community, and 1 indicates a community that has

no edge to the rest of the graph (0 boundary weight). A value of

0.5 indicates that the within-community weight and the boundary

weights are equal. A value 0.5 < Sc < 1 corresponds to the

“weak sense” definition of community [7]: a community is defined

as a subgraph where the within-community weight is above the

boundary weight. Figure 1 plots Sc values as a function of within-

community weight and boundary weight.
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Figure 1. Normalised community strength values as a function of within-
community weight and boundary weight.

We can further relate this quantity to graph modularity by using

the null model in the denominator. This encodes the local excess

(or lack) of edge strength within the community compared to

the expected value in the null model. Thus, a valid test statistic

corresponding to Equation 1 obtains from the modularity matrix

and the adjacency matrix and is given by Equation 2, which we

call normalised modularity contribution:

Qc =

∑
i∈Vc,j∈Vc

Bij
∑

i∈Vc,i∼j Aij

(2)

This statistic will be high if the vertices within the community

have on average edge weights above what would be expected under

the null model. The Qc statistic is bounded above as follows: Qc ≤
Sc ≤ 1. The lower bound depends on the null model, and may be

a negative value. Summing the numerator of Qc over communities

and dividing by 2w recovers the standard definition of modularity.

C. Non-parametric testing procedure

We propose a permutation test to estimate the distribution of

these two statistics under the null hypothesis “the value of the

statistic is the same as if vertices of the community were chosen at

random”. Communities are entirely defined by the partition vector

p, thus it is sufficient to randomly permute its components to obtain

random assignment of vertices to communities. Each community

will keep the same number of vertices. Randomly permuting the

partition vector a large number of times, and computing the test

statistics of Equations 1 or 2 at each iteration is a fast procedure

to generate the distribution of the test statistic under the null,

as no graph has to be regenerated. Computing a normalised

community strength has complexity O(|Vc||V |), and is linear in

the number of permutations. The permutations are embarassingly

parallel. The normalised modularity contribution requires a null

model, which can add a computational cost of up to O(|V |2) in a

naı̈ve implementation, but need only be computed once. These costs

are not an issue on modern hardware for graphs with vertex set

cardinality in the low hundreds as commonly used in neuroimaging.

Note that a community can be declared significant according

to this test even though the corresponding normalised community

strength is below 0.5, a value indicating that the subgraph of interest

does not meet the definition of weak-sense community. In this case,

the interpretation is that the vertices in the subgraph have more

within-subgraph strength than expected by chance (as represented

by the permutation null model), but that the subgraph is not well-

separated from the rest of the graph.

D. Related approaches

Community significance is closely related to problem of cluster

validity in pattern recognition. The use of a null model in this

context is well-studied, including the principle of generating a

random graph (or dissimilarity matrix). Indices of clustering va-

lidity (e.g. the Jaccard coefficient) have been the focus of most

research and assess whole clusterings rather than a particular

cluster. Likewise, Chang et al’s Monte Carlo fitting approach [2]

focuses on evaluating the significance of a whole graph partition,

rather than of individual communities, and is therefore not directly

comparable to our approach.

The OSLOM algorithm [3], in particular the B-score which

yields individual communities significance, can accomodate over-

lapping communities and hierarchical modules, which our algo-

rithm cannot do. It is based on the combinatorial computation of

the probability that a vertex has a certain number of neighbours in

a subgraph. This can then be compared with the expected number

of neighbours under a null hypothesis. Computing the OSLOM

B-score for a subgraph c has complexity O(|Vc|
2), lower than

our approach. For the kind of graphs and partition vectors we are

interested in here, the main difference is that OSLOM is expected

to have more specificity than our proposed method (since it is a

design goal to avoid finding clusters in random graphs), but at the

expense of sensitivity for subgraphs that do not meet the weak-

sense definition of community. One benefit from our approach is

easy interpretability of Sc (Eq. 1) and the direct relationship of Qc

to modularity.

III. EXPERIMENTS

A. Datasets and data processing

1) Graph data with known communities: We generated a syn-

thetic adjacency matrix for 10 communities, comprising 5 vertices.

The first 5 communities were “true” communities, whereas the last

5 were not supported by the data. Edge strengths were generated

at random, using Pearson correlation of a random multivariate time

series. The expected value of the edge weights outside communities

and in false communities was proportional but smaller than the
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expected values of edges within true communities. Edge weights

smaller than 1/3 of the median were thresholded and replaced by

zeros. The adjacency matrix for a high ratio of within-community-

weight-to-boundary-weight expected values is shown in Fig 2(a).

We also used a subgraph of the binary DBLP collaboration

network [4], randomly selecting 500 communities from the top

5000, and generating an equal number of fake communities of the

same size by drawing at random from vertices not in the top 5000

communities. The sizes of communities ranged from 6 to 7556

vertices (median: 8). The total graph contained 31284 vertices.

2) Functional connectivity graph from fMRI data: We use a

random subset of 8 subjects from a previous study [8], where

subjects go through alternating epochs of rest and movie watching.

The data was acquired using a Siemens 3T scanner, with 3.75 ×
3.75 × 4.2 mm voxels and a TR of 1.1 s.

The dataset was processed with an SPM8 pipeline [8], regionally

averaged in 88 AAL atlas regions (excluding bilateral globus

pallidus due to signal dropout) and wavelet-transformed in the

0.06–0.11 Hz subband. Blocks of rest and movie-watching were

not separated. A functional connectivity graph was computed with

edge weights from Pearson correlation. No regularisation was used

due to the large number of time points.

3) Structural connectivity graph from DWI data: A pre-

computed structural connectivity graph was obtained from the

UCLA multimodal connectivity database (UCMD) [9] (ICBM

study). The data was acquired using a Siemens 1.5T magnet,

with 30 diffusion directions, and is an average of the structural

connectivity of 138 ICBM normal subjects from the 68-regions

parcellation of the Killian-Desikan atlas.

4) Morphological connectivity graph data from structural MRI

data: A pre-computed cortical thickness correlation graph was also

obtained from the UCMD’s ICBM study. This is computed across

the same subjects as the DWI data, and uses 1mm isotropic voxels.

The same atlas was used as for the DWI data.

B. Results

1) Synthetic and DBLP data graph, ground truth partition

vector: Using normalised modularity contribution with a NG null

model on the synthetic graph shown in Figure 2(a), five out of five

real communities were significant (1000 permutations, Bonferroni-

corrected for a critical value of 0.05, all p-values 0.001), and

all five wrong communities were non-significant (min p-value

0.035, max p-value 0.88). The Area Under Curve (AUC) was

1 (thus all significant communities had p-values below those of

non-significant communities) and the Equal Error Rate (EER)

was 0% (thus at an appropriate threshold all communities could

be identified correctly). The performance was the same for nor-

malised community strength. Violin plot for the permuted and non-

permuted value of the statistic for all 10 communities are shown in

Figure 2(b). The OSLOM B-score declared all communities non-

significant, and thus achieved an AUC of 0.5 and EER of 50%.

Since the normalised community strengths are between 0.16 and

0.19 for the ’real’ communities, these do not satisfy the weak-

sense definition of a community, and it is likely that the B-score is

penalising them for this reason. Nevertheless a subgraph structure

is visible and it is of interest to examine it, albeit with caution.

For the 31284-vertices DBLP graph, the AUC was 0.999, the

EER was 0.1%, and setting a threshold of 0.5 on the p-value

yielded a sensitivity of 100% and a specificity of 99.4% when using

normalised community strength. Using OSLOM B-score on the

same data yielded an AUC of 0.924, an EER of 7.6%, a sensitivity

of 84.8% and a specificity of 100%. Since the average subgraph

strength in the 500 real communities is 0.76 (standard deviation

0.25), they satisfy the weak sense definition of community, and we

trust that these are not artefactual communities.
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Figure 2. (a) Synthetic adjacency matrix with 10 communities of varying
number of vertices. The first 5 (until vertex 50) are supported by the
data, the last 5 are not. Edge weights set by correlation. (b) Permuted
distribution (in black) and original value (dots) of the normalised modularity
contribution statistic on the synthetic graph. The real communities (first 5)
are significant (blue dots), and the wrongly assumed communities are not
(last 5, red diamonds)

2) DWI data graph, anatomical partition vector: With DWI

data, the graph where we wish to determine community significance

is derived from tractography, and the partition vector defining

communities is from gross anatomy. Each of the 68 vertices

(region) was assigned to one of 6 anatomical “lobes” (commu-

nities): Frontal, Temporal, Occipital, Parietal, Cingulate, or In-

sula, using the rough mapping in http://surfer.nmr.mgh.harvard.edu/

fswiki/CorticalParcellation. This tests whether intra-lobe structural

connectivity is particularly strong.

In the test, all communities except the Insula are declared signif-

icant at p=0.001, both for the normalised community strength and

the normalised modularity contribution statistic with the NG null

model. The frontal lobe has the highest Sc value, 0.46, and indeed

looks to have relatively few connections to other lobes. The Insula

community consists only of the left and right insular cortex, and

they respectively exhibit much larger structural connectivity with

ipsilateral brain regions (in particular with frontal (pars opercularis,

pars triangularis) and temporal (superior temporal) regions) than

with the contralateral insula. These regions have been reported as

having important afferent and efferent connections to and from the

insula in primates [10].

For the OSLOM B-score, only the Cingulate community is

significant, all others have p=0.99.

3) Structural MRI data graph, anatomical partition vectors:

First, we wish to test whether cortical thickness correlation is sig-

nificantly higher within lobes. The same gross anatomical partition

vector as for the DWI data was used.

Both Sc and Qc statistics showed that the Occipital, Parietal,

and Temporal communities were significant at 0.05 Bonferroni-

corrected. Cingulate and Frontal communities failed the corrected

significance test with Sc (p=0.019 and 0.012 respectively), but

passed with Qc. The Insula community failed both significance
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tests, although marginally (p=0.009 for both Sc and Qc). All

communities failed the OSLOM B-score test (p=0.99). Here, The

highest Sc is for the Parietal community (0.30), on par with

its value on DWI data. Other communities all have weaker Sc,

indicating overall that communities in morphological connectivity

graphs may be more weakly apparent than in DWI graphs.

We can use the same graph data, but a different partition

vector, to test a structural hypothesis about the visual system:

covariation of volumes of components of the visual system could

indicate of their interdependence in development [11]. Here, we

can group regions into a functional “visual system” community to

test whether the cortical thickness correlation is remarkable. Our

community comprises bilateral fusiform (temporal lobe), bilateral

pericalcarine (occipital lobe), and bilateral lingual gyrus (occipital

lobe). Running the test with the Qc statistic shows that this

community is significant at p=0.001. Furthermore, it also seems

to be subtended by strong structural connectivity, as the same

community defined in the DWI data graph also yielded a significant

result at p=0.003. However, the Sc value in the morphological

connectivity graph is rather low (0.10), and slightly higher in the

structural connectivity graph (0.20), and thus the effect is probably

not very strong. The OSLOM B-score deems the “visual system”

community insignificant.

4) fMRI data graph, anatomical partition vector: Here, the

partition vector is based on the identity of brain lobes to which

the fMRI connectivity graph regions belong. The null model used

was the NG null model. All tests were Bonferroni-corrected at the

5% significance level.

The “central” community (bilateral Rolandic operculi) is non-

significant in all subjects. Frontal, Limbic, and Parietal commu-

nities are significant for the majority of subjects using the Qc

statistic, but for 50% or less when using the Sc statistic. Occip-

ital, Subcortical, and Temporal communities are significant for a

majority of subjects using both Qc and Sc statistics. OSLOM B-

score found no significant community in any subject. The Occipital

community had an average Sc of 0.15 (standard deviation 0.02),

while the lowest average was for the Temporal community (Sc

average 0.09, standard deviation 0.02). Thus, it is expected that

Occipital, subcortical, and temporal “lobes” have a significant

excess of connectivity within them, but since they do not satisfy the

definition of a weak-sense community, that they are also strongly

functionally connected to other lobes.

IV. DISCUSSION AND LIMITATIONS

We have proposed a practical and interpretable approach to

test the significance of communities defined across modalities,

yielding plausible significant and insignificant communities in

graphs computed from several modalities. We have shown that the

approach has high sensitivity, perhaps at the expense of specificity,

and suggested checking results based on the normalised community

strength of communities. We believe that such an approach can

be particularly interesting when testing hypotheses linking brain

structure and function. In particular, the improved sensitivity may

be required to detect structure in noisy data, where insisting on a

strict definition of community may cause many false negatives.

We point out that choosing a null model appropriate for the data

is not trivial, and a null model preserving degree distributions may

not be the most appropriate. If Pearson correlation is used to set the

adjacency matrix A, it has been posited that some null models, such

as a random degree-preserving rewiring, lead to overestimation

of the modularity [12]. We could use the Hirschberger-Qi-Steuer

(HQS) algorithm to generate a null model from the covariance

matrix corresponding to A.

Our approach applies to graphs whose edge labels are positive.

Edges with negative-valued labels are thresholded away, possibly

losing information. Alternatives have been developed in the net-

work science literature, with negative edge labels indicative of

between-community links. However the role and significance of

negative correlation in fMRI data and brain imaging is still being

debated, and it is not clear these approaches would apply.

One pitfall is that for very small communities in small graphs, the

number of distinct combinations of |Vc| vertices may be smaller

than the number of permutation iterations, leading to artificially

low p-values. This happens if
( |V |
|Vc|

)
is smaller than the number of

permutation iterations.
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