

Genome-wide Polygenic Risk for Alzheimer's Disease Is Associated With Rate of Metabolic Decline But Not With Rate Of Amyloid Deposition

<u>Andre Altmann</u>, Marc Modat, Sebastien Ourselin for the ADNI

Department of Medical Physics and Biomedical Engineering

Translational Imaging Group (TIG)

Centre for Medical Image Computing (CMIC)

a.altmann@ucl.ac.uk

Toronto, July 23rd 2016

• Assessing a subject's genetic risk for AD

Genetic AD burden

burden = APOE + BIN1 + CR1 + PICALM + CLU + EPHA1 + ABCA7 + TREM2

burden =
$$\sum_{i=1}^{N} \text{SNP}_i \overset{0}{\underset{2}{\leftarrow}} \overset{0}{\overset{1}{}}_2$$

Different genes have different 'impact'

• How to select the genes (SNPs)?

Rationale

- GPS is known to be associated with AD diagnosis
 - Identify people at risk for developing AD
 - Additional tool for patient screening for trails
- We do not know which biomakers respond to increased genome-wide risk for AD
 - Would help to select endpoints for trials
 - Which biomarkers to screen for people at risk
- How genome-wide risk affects the brain
 - Do biomarkers respond uniformly?

- ADNI database
 - Longitudinal PET imaging & genetics
 - FDG PET
 - 5 ROIs (UC Berkeley)
 - Amyloid PET (AV45)
 - Cortex-wide uptake
 - Composite reference region
 - UC Berkeley and in-house pipeline

		HC	MCI	AD	total
FDG	all	271	543	139	953
	2+	140	321	37	498
AV45	all	250	457	137	844
	2+	186	319	32	537

Curtsey M. Scelsi

Methods

- IGAP GWAS 54k subjects
 Some ADNI subjects excluded
- 19 GPS scores
 - 1e-8, 1e-7, ..., 0.95, 1.0
 - ADNI SNPs imputed (~ 5 mio)
 - PLINK function to 'clump results'
- Linear mixed effects model
 - Biomarker at time t_n as a function of time
 - Predictors: time, EDU, SEX, PC1-3, imgAGE, imgDX, APOE-e4 x time, GPS x time
 - Random effect for subject
 - Test for GPS x time effect (reported p-value)

Scores from similar cut-offs are highly correlated

- APOE locus was excluded from GPS
 - None of these scores is correlated with the APOE-e4 genotype

GPS and Case-Control Status

GPS and Case-Control Status

Â

GPS and PET biomarkers

GPS and PET biomarkers (subgroups)

Î

GPS and PET biomarkers (subgroups)

- The two PET biomarkers exhibited different association patterns regarding GPS
 - Increase in brain amyloid mainly driven by APOE-e4
 - Decrease of glucose metabolism in some regions associated with GPS
- Scores with many SNPs showed stronger associations – in accordance with DX
- Amyloid increases over 2 years may not be very sensitive – but APOE-e4 effect is visible
- Interactions of GPS with APOE-e4 status and DX
- FDG effect not uniform follow-up studies needed

DEMENTIA RESEARCH CENTRE

Sebastien Ourselin Marc Modat M Jorge Cardoso Marzia Scelsi Nick C Fox Jonathan Schott Jonathan Rohrer

Chris Frost

alzheimer's & association[®]

Genome-wide Polygenic Risk for Alzheimer's Disease Is Associated With Rate of Metabolic Decline But Not With Rate Of Amyloid Deposition

Toronto, July 23rd 2016