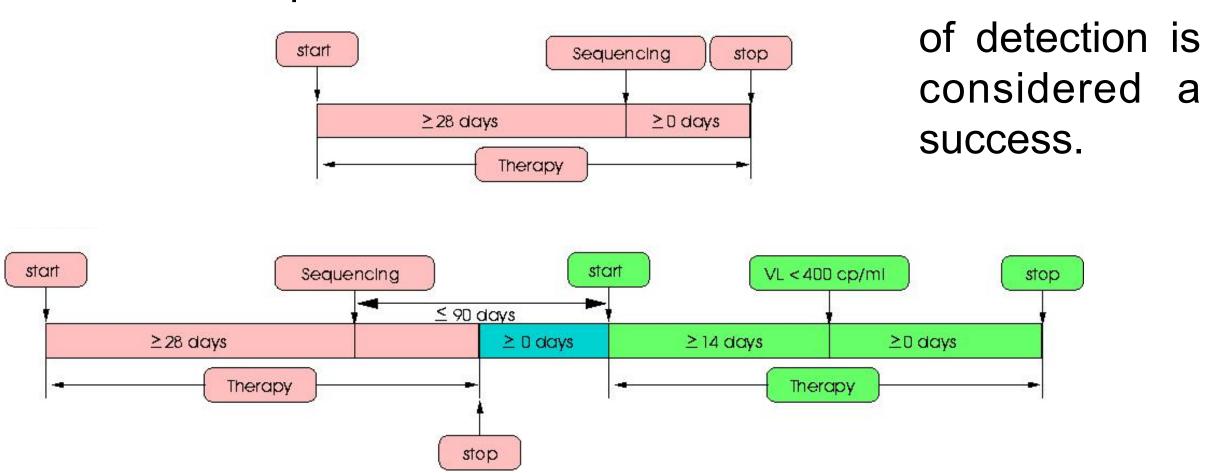


Inferring Virological Response from Genotype: With or without predicted phenotypes?

André Altmann¹, Tobias Sing¹, Hans Vermeiren², Bart Winters², Elke Van Craenenbroeck², Koen Van der Borght², Soo-Yon Rhee³, Robert W Shafer³, Eugen Schülter⁴, Rolf Kaiser⁴, Yardena Peres⁵, Anders Sonnerborg⁶, W Jeffrey Fessel⁷, Francesca Incardona⁸, Maurizio Zazzi⁹, Lee Bacheler¹⁰, Herman Van Vlijmen², Thomas Lengauer¹ 1 Max Planck Institute for Informatics, Saarbrücken, Germany; 2 Virco BVBA, Mechelen; Belgium; 3 Stanford, CA, USA; 4 University of Cologne, Germany; 5 IBM Research, Haifa, Israel; 6 Karolinska Institute, Stockholm, Sweden; 7 Kaiser-Permanente Medical Care Program, San Francisco, CA, USA; 8 Informa, Rome, Italy; 9 University of Siena, Italy; 10 VircoLab, Inc., Durham, NC, USA

(1) Background

Inferring response from genotype via the intermediate step of predicted phenotypes is often thought to have serious limitations. Here, we provide a retrospective comparison of approaches using either genotype or predicted phenotypes alone, or in combination.

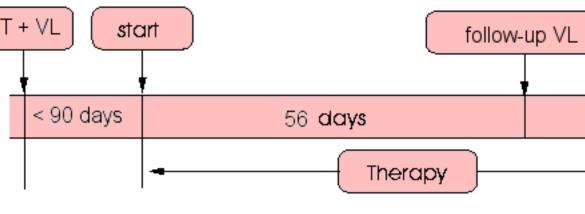

(2) Methods

Data

Comparisons were based on two clinical datasets derived from 23,868 patients from Europe (Eu*Resist*) and California (Stanford-Kaiser). Response to antiviral therapy was dichotomized into success and failure according to the two EuResist standard datum definitions [1]:

In the classic definition a success is observed if the viral load (VL) is reduced below the limit of detection or more than two logs with

respect to the baseline measurement after 8 weeks of treatment. Otherwise the therapy is considered a failure. In the alternative definition a sequencing event during an ongoing therapy marks a failure. A follow-up treatment that reduces the VL below the limit


Computation of treatment scores

Four different types of inputs were used to compute treatment scores:

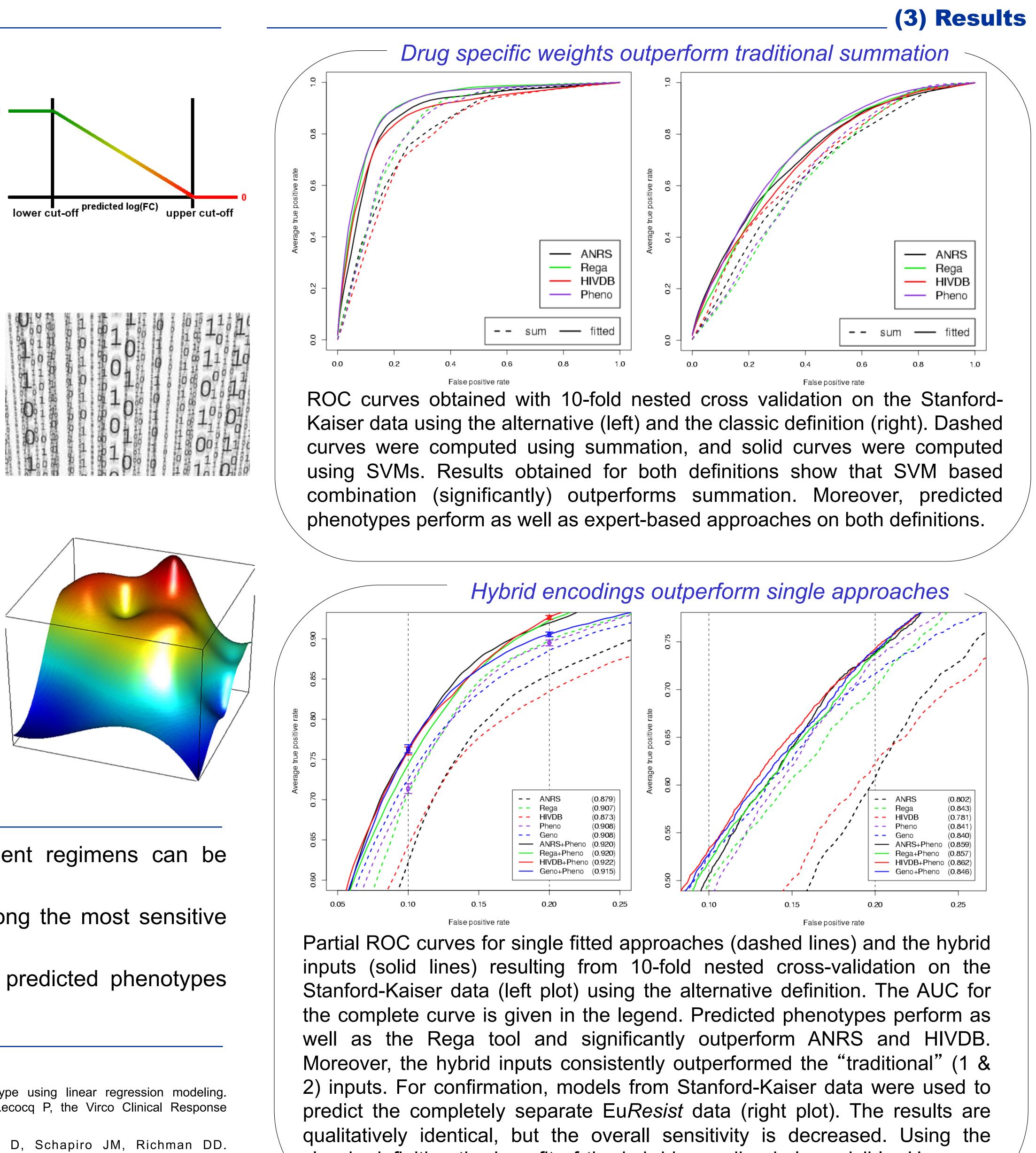
. Expert algorithms: One number for each drug, representing the predicted activity of the drug for a given genotype. Activity was scaled between 0 and 1, with 0 indicating fully inactive drugs and 1 fully active drugs. Drugs not applied in a given treatment change episode were all assigned an activity level of 0. The mapping displayed by the tables on the right was used to translate the verbal rating given by the systems into a numeric value.

Method rating	ANRS/Rega
Resistant	0
Intermediate	0.5
Susceptible	1

Method rating	HIVDB
High-level resistance	0
Intermediate resistance	0.25
Low-level resistance	0.5
Potential low- level resistance	0.75
Susceptible	1

(2) Methods cont. 2. Predicted phenotypes: The VircoTYPE 4.0 [2] system is used to predict phenotypic resistance to the individual drug for a given genotype., ____ Phenotypic resistance is given as the foldchange (FC) in log10(IC50). The FC in resistance was transformed into the interval [0,1], by using linear interpolation between the lower and upper cut-off (right figure). Results based on this input could be improved by using the relation between FC and %loss of wild-type response. 3. Raw genotype: A 0/1 representation of the genotype that indicates the presence (1) or absence (0) of a specific mutation. The list of mutations suggest by the International AIDS Society [3] was used to derive this representation. The given treatment was encoded in the same way. A 1 indicates the presence of a drug within the regimen, and 0 its absence 4. Hybrid: predicted phenotypes combined with either expert algorithm or raw genotype Regimen scores for the "traditional" inputs (1 & 2) were derived from individual drug scores by summation. For comparison, specific weights were computed for each drug using support vector machines (SVMs). SVMs were also used to compute regimen scores for inputs 3 and 4. Model selection and evaluation was performed by nested cross-validation. Results are shown using receiver operating characteristic (ROC) curves. Conclusions

- Traditional summation scoring of treatment regimens can be improved by fitting weights for each drug
- Predicted phenotypes as inputs were among the most sensitive non-hybrid approaches


 Combining information on genotype and predicted phenotypes can improve predictive performance

References

- http://www.euresist.org/contenuti/D2 1.pdf
- . Prediction of HIV-1 drug susceptibility phenotype from the viral genotype using linear regression modeling. Vermeiren H, Van Craenenbroeck E, Alen P, Bacheler L, Picchio G, Lecocq P, the Virco Clinical Response Collaborative Team. Journal of Virological Methods (in press)
- Johnson VA, Brun-Vezinet F, Clotet B, Kuritzkes DR, Pillay D, Schapiro JM, Richman DD. Update of the drug resistance mutations in HIV-1: Fall 2006. Topics in HIV Medicine 2006; 14; 125-30. **Acknowledgements**

This work is performed as part of the Eu*Resist* project (IST -4- 027173-STP).

classic definition the benefit of the hybrid encoding is less visible. However, predicted phenotypes are still among the most sensitive approaches.

