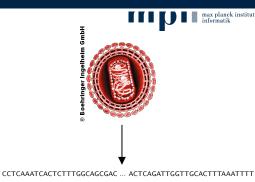
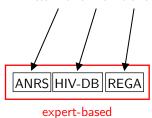


Validation of geno2pheno and THEO on a large independent clinical dataset

André Altmann

Department of Computational Biology and Applied Algorithmics Max Planck Institute for Informatics D-66123 Saarbrücken Germany

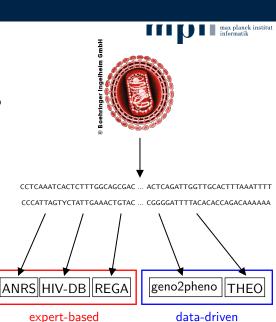

5th European HIV Drug Resistance Workshop, Cascais, Portugal, 28-30 March, 2007



Background

- Genotyping is "standard of care"
- Various methods provide help to genotype interpretation
- Expert-based algorithms
 - ANRS V2006.07
 - HIV-DB
 - Rega V6.4.1
 - ...

CCCATTAGTYCTATTGAAACTGTAC ... CGGGGATTTTACACACCAGACAAAAAA



Background

- Genotyping is "standard of care"
- Various methods provide help to genotype interpretation
- Expert-based algorithms
 - ANRS V2006.07
 - HIV-DB
 - Rega V6.4.1
 - ..
- Data-driven algorithms
 - geno2pheno
 - THEO

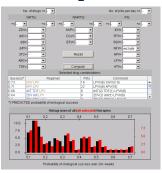
Arevir EuResist

Data-driven methods have to be validated on clinical data

Background - geno2pheno

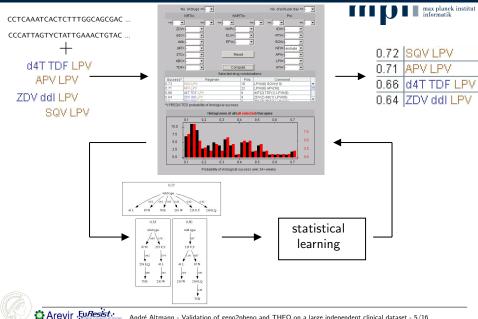
geno2pheno_[resistance] predicts phenotypic resistance from genotype

- Trained on ≈ 800 genotype-phenotype pairs per drug
- Expert derived clinical cut-offs
- www.geno2pheno.org
- Details: Presentation of H. Walter


Arevir EuResist

Background - THEO

- THErapy Optimizer (THEO) predicts *in vivo* response to combination therapies
- Trained on data from the Stanford HIV Drug Resistance Database and from two Northern California clinic populations
 - Computes genetic barrier to drug resistance for every drug in regimen
 - Part of the geno2pheno web-service
 - Antiviral Therapy 2007 (12) p 169-178:


max planck institut informatik

Improved prediction of response to antiretroviral combination therapy using the genetic barrier to drug resistance

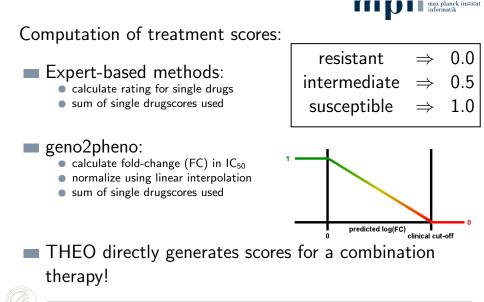
André Altmann¹*, Niko Beerenwinkel², Tobias Sing¹, Igor Savenkov¹, Martin Däumer², Rolf Kaiser³, Soo-Yon Rhee⁴, W Jeffrey Fessel⁸, Robert W Shafer⁴ and Thomas Lengauer¹

Background - THEO

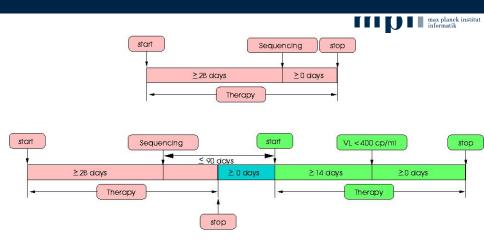
Database:

Two views to extract data:

- classic: typical treatment situation
- alternative: less requirements \Rightarrow generates more data

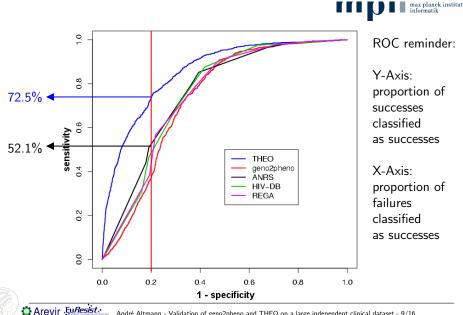

See also:

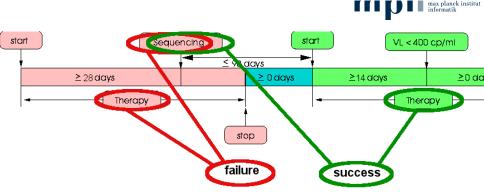
Arevir EuResist


- Presentation of M. Zazzi
- Poster Eu*Resist*: #56

max planck institut

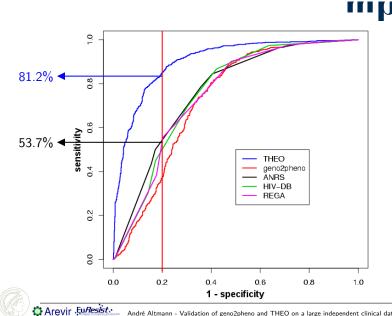
Arevir EuResist.


Results - "alternative" Standard Datum

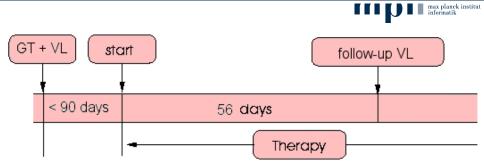


5224 treatment-sequence pairs (EuResist database)

- 904 successes
- 4320 failures


Results - "alternative" Standard Datum

1518 treatment-sequence pairs (EuResist database)

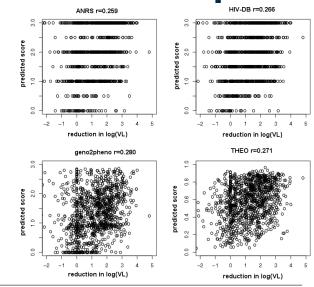

- 759 sequences
- 2 therapies per sequence: one failure & one success (same patient)
- perfect dataset to compare algorithms

André Altmann - Validation of geno2pheno and THEO on a large independent clinical dataset - 11/16

max planck institut informatik

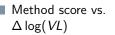
Results - "classic" Standard Datum

- Focus on *initial response* under *typical treatment* situation
- Success: undetectable (400 cp/ml) or VL reduction of two log
- 1064 treatment-sequence pairs
 - \Rightarrow 614 successes and 450 failures
- Two different tasks:
 - Classification
 - Prediction of $\Delta \log(VL)$


Results - Correlation

Method score vs. $\Delta \log(VL)$

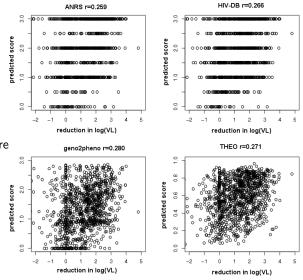
Important information missing:


 \Rightarrow baseline viral load

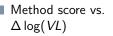
Arevir EuResist

max planck institut informatik

Results - Correlation


Important information missing:

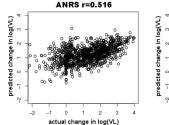
 \Rightarrow baseline viral load


Predict Δ log(VL) with simple linear model:

Arevir EuResist

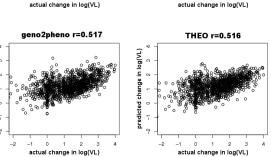
$$\Delta \log(VL) = x_1 * VL + x_2 * \text{score}$$

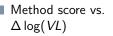
max planck institut informatik


Important information missing:

 \Rightarrow baseline viral load

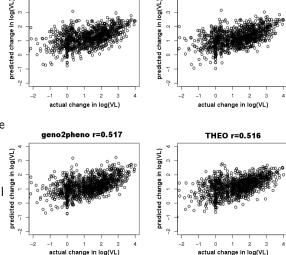
Predict Δ log(VL) with simple linear model:


Arevir EuResist


$$\Delta \log(VL) = x_1 * VL + x_2 * \text{score}$$

predicted change in log(VL)

HIV-DB r=0.519



- Important information missing:
 - \Rightarrow baseline viral load
- Predict Δ log(VL) with simple linear model:

$$\Delta \log(VL) = x_1 * VL + x_2 * \text{score}$$

 THEO allows to include log(VL) as an additional feature into the statistical model

Arevir EuResist

max planck institut

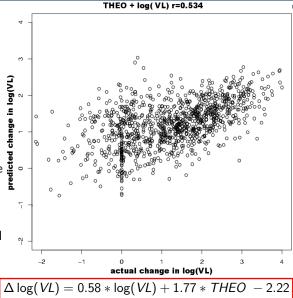
HIV-DB r=0.519

ANRS r=0.516

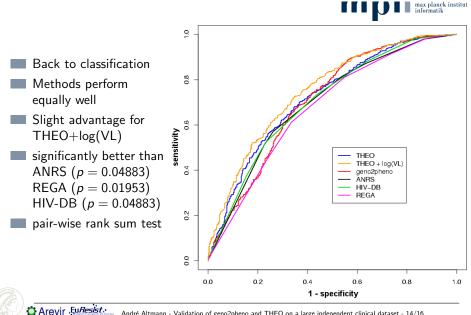
Results - Correlation

Method score vs. $\Delta \log(VL)$

Important information missing:


 \Rightarrow baseline viral load

Predict $\Delta \log(VL)$ with simple linear model:


$$\Delta \log(VL) = x_1 * VL + x_2 * \text{score}$$

 THEO allows to include log(VL) as an additional feature into the statistical model

C Arevir EuResist

Results - Classification

- PSS guided treatment selection works as well as GSS guided treatment selection
- No difference between methods in *typical treatment* situation
- Completely data-driven approach outperforms GSS/PSS in classification task
- THEO shows $\approx 20\%$ -points improvement in sensitivity at same specificity (80%)
- **O**n balanced subset \approx 28%-points improvement
- THEO is part of the geno2pheno service and freely available for research purposes at www.geno2pheno.org

Acknowledgments

Arevir EuResist

Tobias Sing	Max-Planck-Institute	max planck institut
Joachim Büch	for Informatics,	
Thomas Lengauer	Saarbrücken, Germany	
		AN INCOMENT
Martin Däumer		
Eugen Schülter	University of Cologne, Germany	
Rolf Kaiser		
		A COMPANY
Niko Beerenwinkel	Harvard University, Cambridge, MA, USA	
		KLINISCHEund
Hauke Walter	National Reference Center	
	for Retroviruses, Erlangen, Germany	
	for Recrowingses, Enangen, Germany	EXLANGE V-NURMEEKS Mationales Relevenzentrum
Rober W Shafer	Stanford University, CA, USA	A definition
Soo-Yon Rhee	Staniord University, CA, USA	
500-Ton Knee		
W Jeffrey Fessel	Kaiser-Permanente Medical Care Program	
vv Senrey i esser	Northern California San Francisco, USA	
	Northern California San Francisco, USA	
Maurizio Zazzi	University Siena, Italy	_
Anders Sonnerborg	Karolinska Institute, Sweden	
Yardena Peres	,	EU <i>MESIST</i>
	IBM Isreal, Haifa, Israel	to predict response to anti-HIV treatment
Francesca Incadorna	Informa S.r.I., Rome, Italy	