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Background

Genotyping is “standard of
care”

Various methods provide help
to genotype interpretation

Expert-based algorithms

ANRS V2006.07
HIV-DB
Rega V6.4.1
...

Data-driven algorithms

geno2pheno
THEO

Data-driven methods have
to be validated on clinical
data

CCTCAAATCACTCTTTGGCAGCGAC ... ACTCAGATTGGTTGCACTTTAAATTTT

CCCATTAGTYCTATTGAAACTGTAC ... CGGGGATTTTACACACCAGACAAAAAA

expert-based

ANRS HIV-DB REGA

expert-based data-driven

ANRS HIV-DB REGA geno2pheno THEO
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Background - geno2pheno

geno2pheno[resistance]

predicts phenotypic
resistance from genotype

Trained on ≈ 800
genotype-phenotype pairs
per drug

Expert derived clinical
cut-offs

www.geno2pheno.org

Details:
Presentation of H. Walter

x
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Background - THEO

THErapy Optimizer (THEO) predicts in
vivo response to combination therapies

Trained on data from the Stanford HIV
Drug Resistance Database and from two
Northern California clinic populations

Computes genetic barrier to drug
resistance for every drug in regimen

Part of the geno2pheno web-service

Antiviral Therapy 2007 (12) p 169-178:
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Background - THEO

CCTCAAATCACTCTTTGGCAGCGAC ...

CCCATTAGTYCTATTGAAACTGTAC ...

+

statistical
learning
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Methods - Data

Database:


ARCA

Arevir

Karolinska

Two views to extract data:
classic: typical treatment situation
alternative: less requirements ⇒ generates more data

See also:
Presentation of M. Zazzi
Poster EuResist: #56

André Altmann - Validation of geno2pheno and THEO on a large independent clinical dataset - 6/16



Methods - Treatment scores

Computation of treatment scores:

Expert-based methods:
calculate rating for single drugs
sum of single drugscores used

geno2pheno:
calculate fold-change (FC) in IC50

normalize using linear interpolation
sum of single drugscores used

THEO directly generates scores for a combination
therapy!

resistant ⇒ 0.0
intermediate ⇒ 0.5
susceptible ⇒ 1.0
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Results - “alternative” Standard Datum

5224 treatment-sequence pairs (EuResist database)

904 successes
4320 failures
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Results - “alternative” Standard Datum

72.5%

52.1%

ROC reminder:

Y-Axis:
proportion of
successes
classified
as successes

X-Axis:
proportion of
failures
classified
as successes
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Results - Balanced subset

1518 treatment-sequence pairs (EuResist database)

759 sequences
2 therapies per sequence: one failure & one success (same patient)

perfect dataset to compare algorithms
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Results - Balanced subset

81.2%

53.7%
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Results - “classic” Standard Datum

Focus on initial response under typical treatment situation
Success: undetectable (400 cp/ml) or VL reduction of two log
1064 treatment-sequence pairs
⇒ 614 successes and 450 failures
Two different tasks:

Classification
Prediction of ∆ log(VL)
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Results - Correlation

Method score vs.
∆ log(VL)

Important information
missing:
⇒ baseline viral load

Predict ∆ log(VL) with
simple linear model:

∆ log(VL) = x1∗VL+x2∗score

THEO allows to include
log(VL) as an additional
feature into the statistical
model

∆ log(VL) = 0.58 ∗ log(VL) + 1.77 ∗ THEO − 2.22
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Results - Classification

Back to classification

Methods perform
equally well

Slight advantage for
THEO+log(VL)

significantly better than
ANRS (p = 0.04883)
REGA (p = 0.01953)
HIV-DB (p = 0.04883)

pair-wise rank sum test
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Conclusions

PSS guided treatment selection works as well as GSS guided
treatment selection

No difference between methods in typical treatment situation

Completely data-driven approach outperforms GSS/PSS in
classification task

THEO shows ≈ 20%-points improvement in sensitivity at
same specificity (80%)

On balanced subset ≈ 28%-points improvement

THEO is part of the geno2pheno service and freely available
for research purposes at www.geno2pheno.org
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